Advertisement

Genetic instability and rapid speciation: are they coupled?

  • A. Fontdevila
Part of the Contemporary Issues in Genetics and Evolution book series (CIGE, volume 1)

Abstract

Models of rapid speciation by fixation of underdominant chromosomal rearrangements are constrained by multiple conditions on population structure and chromosomal performance. Realistic population conditions impose long periods of time to fixation or reproductive isolation, even under a model of accumulation of successive advantageous slightly underdominant rearrangements. However, when increased mutation rates are considered, fixation time is significantly reduced. Evidence is presented of high rates of chromosomal rearrangement production under genomic stress, such as in inbred and interspecific crosses. These episodes of high instability are most probably the result of mobile element transpositions, since transposition is also increased under genomic stress. Nonetheless, the evolutionary value of mobile elements to speed up speciation will be only significant if their mutagenic potential is activated in concert with population scenarios favorable to speciation events. Although this coupling needs to be demonstrated, many models of rapid speciation are carried out under population conditions favoring inbreeding and/or hybridization.

Key words

Genetic instability reproductive isolation chromosomal speciation mobile elements transposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askew, R. R., 1968. Considerations on speciation in Chalcidoidea (Hymenoptera). Evolution 22: 642–645.CrossRefGoogle Scholar
  2. Baker, W. K., 1968. Position-effect variegation. Adv. Genet. 14: 133–169.PubMedCrossRefGoogle Scholar
  3. Barton, N. H. & B. O. Bengtsson, 1986. The barrier to genetic exchange between hybridising populations. Heredity 56: 357–376.CrossRefGoogle Scholar
  4. Barton, N. H. & G. M. Hewitt, 1985. Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 16: 113–148.CrossRefGoogle Scholar
  5. Barton, N. H., 1979. Gene flow past a cline. Heredity 43: 333–339.CrossRefGoogle Scholar
  6. Barton, N. H., 1983. Multilocus clines. Evolution 37: 454–471.CrossRefGoogle Scholar
  7. Belgovsky, M. L., 1937. A comparison of the frequency of induced mutations in D. simulans and its hybrid with D. melanogaster. Genetica 19: 370–386.CrossRefGoogle Scholar
  8. Bengtsson, B. O. & W. F. Bodmer, 1976. On the increase of chromosomal mutations under random mating. Theor. Popul. Biol. 9: 260–281.PubMedCrossRefGoogle Scholar
  9. Bengtsson, B. O., 1985. The flow of genes through a genetic barrier, pp. 31–42 in Evolution. Essays in Honor of J. Maynard-Smith, edited by P. J. Greenwood, P. H. Harvey & M. Slatkin. Camb. Univ. Press, Cambridge.Google Scholar
  10. Berg, D. E. & M. M. Howe, 1989. Mobile DNA. American Soc. for Microbiology. Washington, D.C.Google Scholar
  11. Biémont, C, 1991. Are imprinting and inbreeding two related phenomena? Genet. Sel. Evol. 23: 85–102.CrossRefGoogle Scholar
  12. Biémont, C, A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster. Nature 329: 742–744.PubMedCrossRefGoogle Scholar
  13. Biémont, C, C. Arnault & A. Heizmann, 1990. Massive changes in genomic locations of P elements in an inbred line of Drosophila melanogaster. Naturwissenschaften 77: 485–488.PubMedCrossRefGoogle Scholar
  14. Bingham, P. M., M. G. Kidwell & G. M. Rubin, 1982. The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P strain-specific transposon family. Cell 29: 995–1004.PubMedCrossRefGoogle Scholar
  15. Blackman, R. K., R. Grimaila, M. M. D. Koehler & W. M. Gelbart, 1987. Mobilization of hobo elements residing within decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49: 497–505.PubMedCrossRefGoogle Scholar
  16. Bregliano, J. C, G. Picard, A. Bucheton, A. Pelisson, J. M. Lavige & P. L'Heritier, 1980. Hybrid dysgenesis in Drosophila melanogaster. Science 207: 606–611.PubMedCrossRefGoogle Scholar
  17. Brookfield, J. F. Y., E. Montgomery & C. Langley, 1984. Apparent absence of transposable elements related to the P elements of D. melanogaster in other species of Drosophila. Nature 310: 330–332.PubMedCrossRefGoogle Scholar
  18. Bush, G. L., 1975. Modes of animal speciation. Annu. Rev. Ecol. Syst. 6: 339–364.CrossRefGoogle Scholar
  19. Bush, G. L., 1981. Stasipatric speciation and rapid evolution in animals, pp. 201–219 in Evolution and Speciation: Essays in Honor of M. J. D. White, edited by W. R. Atchley & D. S. Woodraft. Cambridge University Press, Cambridge.Google Scholar
  20. Capy, P., F. Chackrani, F. Lemeunier, D. L. Hartl & J. R. David, 1990. Active mariner transposable elements are widespread in natural populations of Drosophila simulans. Proc. Royal Soc, Lond. B 242: 57–60.CrossRefGoogle Scholar
  21. Carson, H. L., 1982. Speciation as a major reorganization of poly genie balances, pp. 411–433 in Mechanisms of Speciation, edited by C. Barigozzi. Alan R. Liss, New York.Google Scholar
  22. Charlesworth, B. & C. H. Langley, 1991. Populations genetics of transposable elements in Drosophila, pp. 150–176 in Evolution at the Molecular Level, edited by R. Selander, A. G. Clark and T. S. Whittam. Sinauer, Sunderland, Mass.Google Scholar
  23. Charlesworth, B., R. Lande & M. Slatkin, 1982. A neo-Darwinian commentary on macroevolution. Evolution 36: 474–498.CrossRefGoogle Scholar
  24. Coen, E. C. & R. Carpenter, 1986. Transposable elements in Antirrhinum majus: generators of genetic diversity. Trends in Genetics 292–296.Google Scholar
  25. Coluzzi, M., 1982. Spatial distribution of chromosomal inversions and speciation in anopheline mosquitoes, pp. 143–153 in Mechanisms of Speciation, edited by C. Barigozzi. Alan. R. Liss, New York.Google Scholar
  26. Coyne, J. A., 1989. Mutation rates in hybrids between sibling species of Drosophila. Heredity 63: 155–162.PubMedCrossRefGoogle Scholar
  27. Crow, J. F., W. R. Engels & C. Denniston, 1990. Phase 3 of Wright shifting-balance theory. Evolution 44: 233–247.CrossRefGoogle Scholar
  28. Dobzhansky, T., 1970. Genetics of the evolutionary process. Columbia University Press, New York.Google Scholar
  29. Dowsett, A. P., 1983. Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma 88: 104–108.PubMedCrossRefGoogle Scholar
  30. Eggleston, W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature 331: 368–370.PubMedCrossRefGoogle Scholar
  31. Engels, W. R. & C. R. Preston, 1984. Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107: 657–678.PubMedGoogle Scholar
  32. Evgenev, M. B., G. N. Yenikolopov, N. I. Peunova & V. Ilyin, 1982. Transposition of mobile genetic elements in interspecific hybrids of Drosophila. Chromosoma 85: 375–386.CrossRefGoogle Scholar
  33. Fitzpatrick, G. F. & J. A. Sved, 1986. High levels of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 48: 89–94.CrossRefGoogle Scholar
  34. Fontdevila, A., 1987. The unstable genome: An evolutionary approach. Genet. Iber. 39: 315–349.Google Scholar
  35. Futuyma, D. J. & G. C. Mayer, 1980. Non-allopatric speciation in animals. Syst. Zool. 29: 254–271.CrossRefGoogle Scholar
  36. Gelbart, W. M. & R. K. Blackman, 1989. The hobo element of Drosophila melanogaster. Progress Nuc. Acid. Res. and Mol. Biol. 36: 37–46.CrossRefGoogle Scholar
  37. Gerasimova, T. I., A. B. Ladvishchenko, V. A. Mogila, S. G. Georgieva, S. L. Kiselev & D. V. Maksymiv, 1990. Transposition bursts and chromosome rearrangements in unstable Drosophila lines. Genetika 26: 399–411.PubMedGoogle Scholar
  38. Gershenson, S. M., 1986. Viruses as mutagenic factors. Mutation Res. 167: 203–213.PubMedCrossRefGoogle Scholar
  39. Gerstel, D. U. & J. A. Burns, 1966. Chromosomes of unusual length in hybrids between two species of Nicotiana. Chromosomes Today 1: 41–56.Google Scholar
  40. Gerstel, D. U. & J. A. Burns, 1967. Phenotypic and chromosomal abnormalities associated with the introduction of heterochromatin from Nicotiana otophora into N. tabacum. Genetics 56: 483–502.PubMedGoogle Scholar
  41. Green, M. M., 1980. Transposable elements in Drosophila and other diptera. Ann. Rev. Genet. 14: 109–120.PubMedCrossRefGoogle Scholar
  42. Hagele, K., 1984. Different hybrid effects in reciprocal crosses between Chironomus thummi thummi and Ch. th. piger including spontaneous chromosome aberrations and sterility. Genetica 63: 105–111.CrossRefGoogle Scholar
  43. Hall, W. P., 1983. Modes of speciation and evolution in the sceloporine iguanid lizards. I. Epistemology of the comparative approach and introduction to the problem, pp. 643–679 in Advances in Herpetology and Evolutionary Biology, edited by A. G. J. Rhodin and K. Miyata. Mus. Comp. Zool., Harvard Univ., Cambridge, Mass.Google Scholar
  44. Harada, K., K. Yukuhiro & T. Mukai, 1990. Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87: 3248–3252.PubMedCrossRefGoogle Scholar
  45. Hatzopoulos, P., M. Monastirioti, G. Yannopoulos & C. Louis, 1987. The instability of the TE-like mutation Dp(2;2)GYL of Drosophila melanogaster is intimately associated with the hobo element. EMBO J. 6: 3091–3096.PubMedGoogle Scholar
  46. Haymer, D.S. & J. L. Marsh, 1986. Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable genetic element. Developmental Genetics 6: 281–291.PubMedCrossRefGoogle Scholar
  47. Hedrick, P. W., 1981. The establishment of chromosomal variants. Evolution 35: 322–332.CrossRefGoogle Scholar
  48. Hey, J., 1989. Speciation via hybrid dysgenesis: negative evidence from the Drosophila affinis subgroup. Genetica 78: 97–104.CrossRefGoogle Scholar
  49. Hoffman, A. A. & P. A. Parsons, 1991. Evolutionary genetics and environmental stress. Oxford Univ. Press, Oxford.Google Scholar
  50. Kidwell, M. G., J. F. Kidwell & J. A. Sved, 1977. Hybrid dysgenesis in Drosophila melanogaster. a syndrome of aberrant traits including mutation, sterility, and male recombination. Genetics 86: 813–833.PubMedGoogle Scholar
  51. Lambert, M. E., J. F. McDonald & I. B. Weinstein (eds.), 1988. Eukaryotic Transposable Elements as Mutagenic Agents. Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  52. Lande, R., 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33: 234–251.CrossRefGoogle Scholar
  53. Lande, R., 1985. The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity 54: 323–332.PubMedCrossRefGoogle Scholar
  54. Lewis, H., 1962. Catastrophic selection as a factor in evolution. Evolution 16: 257–271.CrossRefGoogle Scholar
  55. Mackay, T. F. C, 1987. Transposable element-induced quantitative genetic variation in Drosophila, pp. 219–235 in Proceedings of the Second International Conference on Quantitative Genetics, edited by B. S. Weir, E. J. Eisen, M. M. Goodman and G. Namkoong. Sinauer, Sunderland, Mass.Google Scholar
  56. Marin, I., M. Labrador & A. Fontdevila. The evolutionary history of Drosophila buzzatii. XXIII. High content of nonsatellite repetitive DNA in D. buzzatii and in its sibling D. koepferae. Genome (accepteGoogle Scholar
  57. Mayr, E., 1954. Change of genetic environment and evolution, pp. 157–180 in Evolution as a Process, edited by J. Huxley, A. C. Hardy and E. B. Ford. G. Allen & Unwin, London.Google Scholar
  58. Mayr, E., 1978. Modes of Speciation (Review of), by M. J. D. White, Syst. Zool. 27: 478–482.CrossRefGoogle Scholar
  59. Mayr, E., 1982a. Processes of speciation in animals, pp. 1–19 in Mechanisms of speciation, edited by C. Barigozzi. A. R. Liss, Inc. New York.Google Scholar
  60. Mayr, E., 1982b. Speciation and macroevolution. Evolution 36: 1119–1122.CrossRefGoogle Scholar
  61. McClintock, B., 1950. The origin and behavior of mutable loci in maize. Proc. Nat. Acad. Sci. USA. 36: 344–355.PubMedCrossRefGoogle Scholar
  62. McClintock, B., 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16: 13–47.PubMedCrossRefGoogle Scholar
  63. McClintock, B., 1984. The significances of responses of the genome to challenge. Science 226: 792–801.PubMedCrossRefGoogle Scholar
  64. McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.CrossRefGoogle Scholar
  65. McDonald, J. F., D. J. Strand, M. E. Lambert & I. B. Weinstein, 1987. The responsive genome: evidence and evolutionary implications, pp. 239–263 in Development as an Evolutionary Process, edited by R. Raff and E. Raff. Alan R. Liss, New York.Google Scholar
  66. Miller, D. D., 1950. Observations on two cases of interspecific hybridization with Drosophila athabasca. Amer. Natur. 84: 81–93.CrossRefGoogle Scholar
  67. Moran, C. & A. Torkamanzehi, 1990. P-elements and quantitative variation in Drosophila, pp. 99–117 in Ecological and Evolutionary Genetics of Drosophila, edited by J. S. F. Barker, W. T. Starmer and R. J. MacIntyre. Plenum Press, N.Y. and London.Google Scholar
  68. Muller, H. J., 1956. On the relation between chromosome changes and gene mutations. Brookhaven Symposia in Biology 8: 126–147.PubMedGoogle Scholar
  69. Naveira, H. & A. Fontdevila, 1985. The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chromosoma 91: 87–94.PubMedCrossRefGoogle Scholar
  70. Naveira, H. & A. Fontdevila, 1986. The evolutionary history of Drosophila buzzatii. XII. The genetic basis of sterility in hybrids between D. buzzatii and its sibling D. sendo from Argentina. Genetics 114: 841–857.PubMedGoogle Scholar
  71. O'Hare, K., 1987. Chromosome plasticity and transposable elements in Drosophila. TIG 3: 87–88.CrossRefGoogle Scholar
  72. Paquin, C. E. & V. M. Williamson, 1984. Temperature effects on the rate of Ty transposition. Science 226: 53–55.PubMedCrossRefGoogle Scholar
  73. Pasyukova, E. G., E. S. Belyaeva, G. L. Kogan, M. V. Pavlova, L. Z. Kaidanov & V. A. Gvozdev, 1986. Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312.PubMedGoogle Scholar
  74. Preston, C. R. & W. R. Engels, 1989. Spread of transposable elements in inbred lines of Drosophila melanogaster. Progress Nuc, Acid Res. and Mol. Biol. 36: 71–85.CrossRefGoogle Scholar
  75. Reig, O. A., 1989. Karyotypic repatterning as one triggering factor in cases of explosive speciation, pp. 246–289 in Evolutionary Biology of Transient Unstable Populations, edited by A. Fontdevila. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  76. Ruiz, A., A. Fontdevila & M. Wasserman, 1982. The evolutionary history of Drosophila buzzatii. HI. Cytogenetic relationships between two sibling species of the buzzatii cluster. Genetics 101: 503–518.PubMedGoogle Scholar
  77. Sankaranarayanan, K., 1988. Mobile genetic elements, spontaneous mutations and the assessment of genetic radiation hazards in man, pp. 319–336 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.Google Scholar
  78. Schmidt, E. R., 1984. Clustered and interspersed repetitive DNA sequence family of Chironomus. J. Mol. Biol. 178: 1–15.PubMedCrossRefGoogle Scholar
  79. Schwab, M., 1987. Oncogenes and tumor supressor genes in Xiphophorus. Trends in Genetics 3: 38–41.CrossRefGoogle Scholar
  80. Shaw, D. D., P. Wilkinson & D. J. Coates, 1983. Increased chromosomal mutation rates after hybridization between two subspecies of grasshoppers. Science 220: 1165–1167.PubMedCrossRefGoogle Scholar
  81. Sites, J. W., Jr. & C. Moritz, 1987. Chromosomal evolution and speciation revisited. Syst. Zool. 36: 153–174.CrossRefGoogle Scholar
  82. Spirito, F., C. Rossi & M. Rizzoni, 1983. Reduction of gene flow due to partial sterility of heterozygotes for a chromosome mutation. I. Studies on a ‘neutral’ gene not linked to the chromosome mutation in a two population model. Evolution 37: 785–797.CrossRefGoogle Scholar
  83. Spirito, F., C. Rossi & M. Rizzoni, 1991. Populational interactions among underdominant chromosome rearrangements help them to persist in small demes. J. evol. Biol. 3: 501–512.CrossRefGoogle Scholar
  84. Stacey, S. N., R. A. Lansman, H. W. Brock & T. A. Grigliatti, 1986. Distribution and conservation of mobile elements in the genus Drosophila. Mol. Biol. Evol. 3: 522–534.PubMedGoogle Scholar
  85. Stebbins, G. L., 1958. The inviability, weakness, and sterility of interspecific hybrids. Adv. Genet. 9: 147–215.PubMedCrossRefGoogle Scholar
  86. Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucleic Acids Res. 13: 4401–4410.PubMedCrossRefGoogle Scholar
  87. Sturtevant, A. H. & G. W. Beadle, 1936. The relations of inversions in the X chromosome of Drosophila melanogaster to crossing over and nondisjunction. Genetics 21: 554–604.PubMedGoogle Scholar
  88. Sturtevant, A. H., 1939. High mutation frequency induced by hybridization. Proc. Natl. Acad. Sci. USA 25: 308–310.PubMedCrossRefGoogle Scholar
  89. Walsh, J. B., 1982. Rate of accumulation of reproductive isolation by chromosome rearrangements. Am. Nat. 120: 510–532.CrossRefGoogle Scholar
  90. White, M. J. D., 1978a. Modes of speciation. W. H. Freeman and Co. San Francisco.Google Scholar
  91. White, M. J. D., 1978b. Chain processes in chromosomal speciation. Syst. Zool. 27: 285–298.CrossRefGoogle Scholar
  92. White, M. J. D., 1968. Models of speciation. Science 159: 1065–1070.PubMedCrossRefGoogle Scholar
  93. White, M. J. D., 1974. Speciation in the Australian morabine grasshoppers. The cytogenic evidence, pp. 57–68 in Genetic Mechanisms of Speciation in Insects, edited by M. J. D. White. Australian and New Zealand Book Co., Sydney.CrossRefGoogle Scholar
  94. Woodruff, R. C, B. E. Slatko & J. N. Thompson, 1983. Factors affecting mutation rates in natural populations, pp. 37–124 in The Genetics and Biology of Drosophila, v. 3c, edited by M. Ashburner, H. L. Carson & J. N. Thompson, Jr. Academic Press, London.Google Scholar
  95. Wright, S., 1941. On the probability of fixation of reciprocal translocations. Amer. Natur. 75: 513–522.CrossRefGoogle Scholar
  96. Wright, S., 1970. Random drift and the shifting balance theory of evolution, pp. 1–31 in Mathematical topics of population genetics, edited by K. Kojima. Springer Verlag, Berlin.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • A. Fontdevila
    • 1
  1. 1.Departament de Genètica i MicrobiologíaUniversität Autònoma de BarcelonaBellaterraSpain

Personalised recommendations