The retrotransposon family micropia in Drosophila species

  • D.-H. Lankenau
Part of the Contemporary Issues in Genetics and Evolution book series (CIGE, volume 1)


During the diplotene of the prophase of meiosis, the oocytes of many animal species contain spectacular chromosome structures called lampbrush loops (reviewed e.g. by 4Callan, 1987; 5Davidson, 1986). Their basic function seems to be the synthesis and maintenance of a large pool of pre-zygotic transcripts. In most Drosophila species it is the Y-chromosome that develops lampbrush loops in primary spermatocytes during the prophase of meiosis. The Y chromosome is only needed during spermatogenesis as males lacking the Y chromosome are completely viable but sterile (Bridges, 1916). Except during meiosis, the Y chromosomes remain condensed, a typical feature of heterochromatin. Corresponding to this is its repetitive sequence organization which has caused problems in establishing the true origin of these sequences from the Y chromosomal lampbrush loops (Vogt & 30Hennig, 1983). These difficulties were overcome by the application of the microcloning technique to dissect and then directly clone sequences from less than 0.1 pg of Y chromosomal lampbrush loop DNA (12Hennig et al., 1983; Hennig et al., 1989). In order to succeed with these experiments lampbrush loop structures of primary spermatocytes from Drosophila hydei, known to contain the most distinctive loops among all Drosophila species, were micro-dissected from partial Y chromosomes carrying only one or two lampbrush loops (Hackstein et al., 1982). ‘Microclones’ recovered from the lampbrush loops ‘Threads’ and ‘Pseudonucleolus’ led to the discovery of the micropia retrotransposon family (15Huijser et al., 1988; 20Lankenau et al., 1988>).


Transposable Element Drosophila Species Primer Binding Site Primary Spermatocyte Baltic Amber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boeke, J. D. & V. G. Corces, 1989. Transcription and Reverse Transcription of Retrotransposons. Ann. Rev. Microbiol. 43: 403–434.CrossRefGoogle Scholar
  2. Bridges, 1916. Non-disjunction as proof of the chromosome theory of heredity. Genetics 1: 1–52 and 107-163.PubMedGoogle Scholar
  3. Bucheton, A., M. Simonelig, C. Vaury & M. Crozatier, 1986 Sequences similar to the I transposable element involved ir I-R hybrid dysgenesis in Drosophila melanogaster occur ir other Drosophila species. Nature 322: 650–652.CrossRefGoogle Scholar
  4. Callan, H. G., 1987. Lampbrush Chromosomes as seen in histor ical perspective, pp. 5–26 in Structure and Function o Eukaryotic Chromosomes, edited by W. Hennig, Springer Heidelberg NY.Google Scholar
  5. Davidson, E. H., 1986. Gene Activity in early development Academic Press, NY.Google Scholar
  6. Evgen'ev, M., V. G. Corces & D.-H. Lankenau, 1992. Ulysse transposable element of Drosophila shows high structur: similarity to functional domains of retroviruses. J. Mol. Bio 225: 917–924.CrossRefGoogle Scholar
  7. Grimaldi, D. A., 1990. A phylogenetic revised classification a genera in the Drosophilidae (Diptera). Bulletin of the Amer kan Museum of natural History, 197, NY.Google Scholar
  8. Grimaldi, D. A., 1987. Amber fossil Drosophilidae (Dipter; with particular reference to the Hispaniolan taxa. Am. Mi Novitates 2880: 1–23.Google Scholar
  9. Grimaldi, D. A., 1988. Relicts in the Drosophilidae (Dipter pp. 183-213 in Zoogeography of Carribean insects, edited by J. K. Liebherr. Ithaca, Cornell University Press.Google Scholar
  10. Hackstein, J. H. P., O. Leoncini, H. Beck, G. Peelen & W. Hennig Jr., 1982. Genetic fine structure of the Y chromosome of Drosophila hydei. Genetics 101: 257–277.PubMedGoogle Scholar
  11. Hansen, L. J., D. C. Chalker & S. B. Sandmeyer, 1988. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol. Cell. Biol. 8: 5245–5256.PubMedGoogle Scholar
  12. Hennig, W. jun., R. C. Brand, J. Hackstein, R. Hochstenbach, H. Kremer, D.-H. Lankenau, S. Lankenau, K. Miedema & A. Pötgens, 1989. Y chromosomal fertility genes of Drosophila: a new type of eucharyotic genes, Genome 31: 561–571.PubMedCrossRefGoogle Scholar
  13. Hennig, W. sen., 1965. Die Acalyptratae des Baltischen Bernsteins. Stuttg. Beitr. Naturkd. No. 145.Google Scholar
  14. Huijser, P., 1987. Genomic organization of microdissected Y-chromosomal lampbrush loop DNA sequences of Drosophila hydei. Ph. D. Thesis, University of Nijmegen, The Netherlands.Google Scholar
  15. Huijser, P., C. Kirchhoff, D.-H. Lankenau & W. Hennig Jr., 1988. Retrotransposon sequences are expressed in Y chromosomal lampbrush loops of Drosophila hydei. J. Mol. Biol. 203: 689–697.PubMedCrossRefGoogle Scholar
  16. Kimelman, K. & M. W. Kirschner, 1989. An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes, Cell 59: 687–696.PubMedCrossRefGoogle Scholar
  17. Koehlstaedt, L. A., J. Wang, J. M. Friedman, P. A. Rice & T. A. Steitz, 1992. Crystal structure at 3.5A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256: 1783–1790.CrossRefGoogle Scholar
  18. Lankenau, D.-H. & W. Hennig Jr., 1990. Micropia-Dm2, the nucleotide sequence of a rearranged retrotransposon from Drosophila melanogaster. Nucl. Acids Res. 18: 4265–4266.PubMedCrossRefGoogle Scholar
  19. Lankenau, D.-H., 1990. Molecular structure and evolution of a retrotransposon family in Drosophila. Ph. D. Thesis, University of Nijmegen, The Netherlands.Google Scholar
  20. Lankenau, D.-H., P. Huijser, E. Jansen, K. Miedema & W. Hennig Jr., 1988. Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. J. Mol. Biol. 204: 233–246.PubMedCrossRefGoogle Scholar
  21. Lankenau, D.-H., P. Huijser, E. Jansen, K. Miedema & W. Hennig Jr., 1990. DNA sequence comparison of micropia transposable elements from Drosophila hydei and Drosophila melanogaster. Chromosoma 99: 111–117.PubMedCrossRefGoogle Scholar
  22. Lankenau, D.H., P. Huijser & W. Hennig Jr., 1989. Characterization of the long terminal repeats of micropia elements microdissected from Y chromosomal lampbrush loops ‘Threads’ of Drosophila hydei. J. Mol. Biol. 209: 493–497.PubMedCrossRefGoogle Scholar
  23. Livak, K. J., 1990. Detailed structure of the Drosophila melanogaster Stellate Genes and their transcripts. Genetics 124: 303–316.PubMedGoogle Scholar
  24. Mulligan-Khipple, P. K. & E. M. Rasch, 1980. The determination of genome size in male and female cells of Drosophila melanogaster by DNA-Feulgen cytophotometry. Histochem. 66: 11–18.CrossRefGoogle Scholar
  25. Parkhurst, S. M. & V. G. Corees, 1987. Developmental expression of Drosophila melanogaster retrovirus-like transposable elements. EMBO J. 6: 419–424.PubMedGoogle Scholar
  26. Robinson, R. R. & N. Davidson, 1981. Analysis of a Drosophila tRNA Gene Cluster: Two tRNA Leu Genes Containing Intervening Sequences. Cell 23: 251–259.PubMedCrossRefGoogle Scholar
  27. Shepherd, J. C. W., 1981a. Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its possible evolutionary justification. Proc. Natl. Acad. Sci. USA 78: 1596–1600.PubMedCrossRefGoogle Scholar
  28. Shepherd, J. C. W., 1981b. Periodic correlations in DNA sequences and evidence suggesting their evolutionary origin in a comma less genetic code. J. Mol. Evol. 17: 94–102.PubMedCrossRefGoogle Scholar
  29. Throckmorton, L. H., 1975. The Phylogeny, Ecology, and Geography of Drosophila, pp. 421–469 in Handbook of Genetics, vol. 3, edited by R. C. King. Plenum Press, NY.Google Scholar
  30. Vogt, P. & W. Hennig Jr., 1983. Y chromosomal DNA of Drosophila hydei. J. Mol. Biol. 167: 37–56.PubMedCrossRefGoogle Scholar
  31. Wasserman, M., 1982. Evolution of the repleta group in Genetics and Biology of Drosophila, 3b, Ashburner, M., H. L. Carsons and J. N. Thompson, Jr., Eds. Academic Press.Google Scholar
  32. Winkler-Oswatitsch, R., A. Dress & M. Eigen, 1986. Comparative Sequence Analysis — Exemplified with tRNA and 5S-rRNA. Chemica Scripta 26B: 59–66.Google Scholar
  33. Xiong, Y. & T. H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • D.-H. Lankenau
    • 1
  1. 1.Department of BiologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations