Transposable DNA elements and life history traits

I. Transposition of P DNA elements in somatic cells reduces the lifespan of Drosophila melanogaster
  • R. C. Woodruff
Part of the Contemporary Issues in Genetics and Evolution book series (CIGE, volume 1)


As an initial study of the influence of transposable DNA elements on life history traits, and as a model system for estimating the impact of somatic genetic damage on longevity, the effect of P DNA element movement in somatic cells on adult lifespan was measured in Drosophila melanogaster males. Lifespan was significantly reduced in males that contained the somatically active P[ry+ Δ2–3](99B) element and 17, 4, 3, but not just a single P element. Furthermore, there appears to be a direct correlation between the number of transposing P elements and the amount of lifespan reduction. This reduction in lifespan observed in males with somatically active P elements is probably due to genetic damage in embryos, larvae and pupae from P-element excisions and insertions, leading to changes in gene structure and regulation, chromosome breakage, and subsequent cell death in adults. This hypothesis is supported in this study by a significant increase in recessive sex-linked lethal mutations in the same males that had reduced lifespans and by the previous observation of chromosome breakage in somatic cells of similar males. The evolutionary implications of these results are discussed, including the possible influence of somatic DNA transpositions on fitness and other life history traits.

Key words

Aging Drosophila melanogaster lifespan mutation P DNA elements somatic cells transpositions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, S., H. U. Meyer, E. Himoe & G. Daniel, 1966. Further evidence demonstrating germinal selection in early permeiotic germ cells of Drosophila males. Genetics 54: 687–697.PubMedGoogle Scholar
  2. Ajioka, J. W. & D. L. Hartl, 1989. Population dynamics of transposable elements. pp. 939–958 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.Google Scholar
  3. Arking, R. & S. P. Dudas, 1989. Review of genetic investigations into the aging processes of Drosophila. J. Amer. Geriatrics Soc. 37: 757–773.Google Scholar
  4. Ashburner, M., 1989. Drosophila: A Laboratory Handbook, Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  5. Auerbach, C, 1976. Mutation Research. Chapman and Hall, London.Google Scholar
  6. Berg, D. E. & M. M. Howe, 1989. Mobile DNA. American Society of Microbiology Publication, Washington, D.C.Google Scholar
  7. Blackman, R. K. & W. M. Gelbart, 1989. The transposable element hobo of Drosophila melanogaster, pp. 523–529 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society of Microbiology Publication, Washington, D.C.Google Scholar
  8. Brosius, J., 1991. Retroposons-seeds of evolution. Science 753.Google Scholar
  9. Carson, H. L., 1990. Increased genetic variance after a population bottleneck. TREE 5: 228–230.PubMedGoogle Scholar
  10. Charlesworth, B. & C. H. Langley, 1991. Population genetics of transposable elements in Drosophila, pp. 150–176 in Evolution at the Molecular Level, edited by R. K. Selander, A. G. Clark and T. S. Whittam. Sinauer Associates Inc., Sunderland, Massachusetts.Google Scholar
  11. Corces, V. G. & P. K. Geyer, 1991. Interactions of retrotransposons with the host genome — The case of the gypsy element of Drosophila. Trends Genet. 7: 86–90.PubMedGoogle Scholar
  12. Crow, J. F., 1984. The P factor: A transposable element in Drosophila, pp.257–273 in Mutation, Cancer and Malformation, edited by E. H. Y. Chu and W. M. Generoso. Plenum, New York.CrossRefGoogle Scholar
  13. Davis, P. S., M. W. Shen & B. H. Judd. 1987. Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc. Natl. Acad. Sci. USA 84: 174–PubMedCrossRefGoogle Scholar
  14. Engels, W. R., 1989. P elements in Drosophila melanogaster, pp. 437–484 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society of Microbiology Publication, Washington, D.C.Google Scholar
  15. Engels, W. R., W. K. Benz, C. R. Preston, P. L. Graham, R. W. Phillis & H. M. Robertson, 1987. Somatic effects of P element activity in Drosophila melanogaster. pupal lethality. Genetics 117: 745–757.Google Scholar
  16. Finch, C. E., 1990. Longevity, Senescence, and the Genome. The University of Chicago Press, Chicago.Google Scholar
  17. Finnegan, D. J. & D. H. Fawcett, 1986. Transposable elements in Drosophila melanogaster in Oxford Survey Eukaryotic. Genes 3: 1–62.Google Scholar
  18. Frankham, R., A. Torkamanzehi & C. Moran, 1991. P-element transposon-induced quantitative genetic variation for inebriation time in Drosophila melanogaster. Theor. Appl. Genet. 81: 317–320.CrossRefGoogle Scholar
  19. Ganetzky, B. & J. R. Flanagan. 1978. On the relationship between senescence and age-related changes in two wild-type strains of Drosophila melanogaster. Exp. Geront. 13: 189–196.CrossRefGoogle Scholar
  20. Georgiev, P. G., S. L. Kiselev, O. B. Simonova & T. I. Gerasimova, 1990. A novel transposition system in Drosophila melanogaster depending on the Stalker mobile genetic element. EMBO J. 9: 2037–2044.PubMedGoogle Scholar
  21. Green, M. M., 1988. Mobile DNA elements and spontaneous gene mutation, pp. 41–50 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  22. Grigliatti, T., M. Richter & I. Whitebread, 1990. Mutations in Drosophila that act in the larval stage and influence larval or adult longevity, pp. 153–176 in Genetic Effects on Aging II, edited by D. E. Harrison. The Telford Press, Inc., Caldwell, New Jersey.Google Scholar
  23. Gunn, J. S., R. C. Woodruff & R. L. Ludwiczak, 1989. The effect of temperature on the movement of P DNA elements in somatic tissues of Drosophila melanogaster. Mutation Res. 226: 267–272.PubMedCrossRefGoogle Scholar
  24. Hartl, D. L., 1989. Transposable Element mariner in Drosophila Species, pp. 531–536 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.Google Scholar
  25. Henderson, S. A., R. C. Woodruff & J. N. Thompson Jr., 1978. Spontaneous chromosome breakage at male meiosis associated with male recombination in Drosophila melanogaster. Genetics 88: 93–107.PubMedGoogle Scholar
  26. Itoh, M., M. Iwabuchi, K. Yoshida & S. H. Hori, 1989. Four tandem defective P-elements associated with positive regulation of the Drosophila melanogaster glucose-6-phosphate dehydrogenase gene. Biochemical Genetics 27: 699–718.PubMedGoogle Scholar
  27. Johnson, T. E., 1990. Caenorhabditis elegans offers the potential for molecular dissection of the aging process, pp. 45–59 in Handbook of The Biology of Aging, edited by E. L. Schneider and J. W. Rowe. Academic Press, Inc., New York.Google Scholar
  28. Jungen, H. & D. L. Hartl, 1979. Average fitness and populations of Drosophila melanogaster as estimated using compoundautosome strains. Evolution 33: 359–370.CrossRefGoogle Scholar
  29. Kidwell, M. G., 1984. Hybrid dysgenesis in Drosophila melanogaster: partial sterility associated with embryo lethality in the P-M system. Genetical Research, Cambridge 44: 11–28.CrossRefGoogle Scholar
  30. Kidwell, M. G., J. Kidwell & J. Sved, 1977. Hybrid dysgenesis in Drosophila melanogaster: A syndrome of aberrant traits Including mutation, sterility and male recombination. Genetics 86: 813–833.PubMedGoogle Scholar
  31. Kim, A. I. & E. S. Belyaeva, 1991a. Direct demonstration of the transposition of mobile element MDG4 in the sex and somatic cells of the unstable mutator line of Drosophila melanogaster. Doklady Biological Sciences 314: 595–598.Google Scholar
  32. Kim, A. I. & E. S. Belyaeva, 1991b. Transpositions of mobile elements gypsy (mdg 4) and hobo in germ-line and somatic cells of a genetically unstable mutator strain of Drosophila melanogaster. Mol. Gen. Genet. 229: 437–444.PubMedCrossRefGoogle Scholar
  33. Kirkwood, T. B. L., 1988. DNA mutations and aging. Mutations Res. 7–13.Google Scholar
  34. Lamb, M. J., 1988. Radiation, pp. 71–84 in Drosophila as a Model Organism for Aging Studies, edited by F. A. Lints and M. H. Soliman. Blackie and Son, Glasgow.Google Scholar
  35. Lambert, M. E., J. F. McDonald & I. B. Weinstein, 1988. Eukaryotic Transposable Elements as Mutagenic Agents. Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  36. Laski, F. A., D. C. Rio & G. M. Rubin, 1986. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44: 7–19.PubMedCrossRefGoogle Scholar
  37. Levis, R., T. Hazelrigg & G. M. Rubin, 1985. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229: 558–561.PubMedCrossRefGoogle Scholar
  38. Lindsley, D. L. & E. H. Grell, 1968. Genetic Variations of Drosophila melanogaster. Carnegie Institution of Washington, Washington, D.C.Google Scholar
  39. Lints, F. A. & M. H. Soliman, 1988. Drosophila as a Model Organism for Aging Studies. Blackie and Sons, Ltd., Glasgow.Google Scholar
  40. Louis, C. & G. Yannopoulos, 1989. The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster, pp. 205–250 in Oxford Surveys of Eukaryotic Genes, edited by N. MacLean. Oxford University Press, Oxford.Google Scholar
  41. Mackay, T. F. C, 1989. Mutation and origin of quantitative Variation, pp. 113–119 in Evolution and Animal Breeding, edited by W. G. Hill and T. F. C. Mackay. CAB International, Wallingford, UK.Google Scholar
  42. Mackay, T. F. C. & C. H. Langley, 1990. Molecular and phenotypic Variation in the achaete-scute region of Drosophila melanogaster. Nature 348: 64–66.PubMedCrossRefGoogle Scholar
  43. Mackay, W. J., W. C. Orr & G. C. Bewley, 1989. Genetic and molecular analysis of antioxidant enzymes in Drosophila melanogaster — A correlation between catalase activity levels, life span, and spontaneous mutation rate, in Molecular Biology of Aging, UCLA Symposia on Molecular and Cellular Biology, New Series, edited by M. Clegg and S. O'Brien. 123: 157–170.Google Scholar
  44. Margolin, B. H., B. J. Collings & J. M. Mason, 1983. Statistical analysis and sample-size determination for mutagenicity experiments with binomial responses. Environ. Mutagen. 5: 705–716.PubMedCrossRefGoogle Scholar
  45. Mayer, P. J. & G. T. Baker, 1985. Genetic aspects of Drosophila as a model system of eukaryotic aging, pp. 61–102 in International Review of Cytology, edited by G. H. Bourne and J. F. Danielli. Academic Press, Inc., New York.Google Scholar
  46. McClintock, B., 1984. The significance of responses of the genome to challenge. Science 226: 792–801.PubMedCrossRefGoogle Scholar
  47. McDonald, J., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.CrossRefGoogle Scholar
  48. Mode, C. J., R. D. Ashleigh, A. Zawodniak & G. T. Baker, 1984. On Statistical tests of significance in studies of survivorship in laboratory animals. J. Gerontol. 39: 36–42.PubMedCrossRefGoogle Scholar
  49. Moerman, D. G. & R. H. Waterston, 1989. Mobile Elements in Caenorhabditis elegans and Other Nematodes, pp. 537–556 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D. C.Google Scholar
  50. Montgomery, E. A., S.-M. Huang, C. H. Langley & B. H. Judd, 1991. Chromosome rearrangements by ectopic recombination in Drosophila melanogaster: Genome structure and evolution. Genetics 129: 1085–1098.PubMedGoogle Scholar
  51. Murray, V, 1990. Hypotesis: Are transposons a cause of aging? Mutation Res. 237: 59–63.PubMedCrossRefGoogle Scholar
  52. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  53. Osiewacz, H. D., 1990. Molecular analysis of aging processes in fungi. Mutation Res. 237: 1–8.PubMedCrossRefGoogle Scholar
  54. Pasyukova, E. G., E. Sp. Belyaeva, G. L. Kogan, L. Z. Kaidanov & V. A. Gvozdev, 1986. Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312.PubMedGoogle Scholar
  55. Phillips, J. P., S. D. Campbell, D. Michaud, M. Charbonneau & A. J. Hilliker, 1989. Null mutation of copper/zinc Superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. USA 86: 2761–2765.PubMedCrossRefGoogle Scholar
  56. Polivanov, S., 1969. Genetic loads and fitness of populations: I. The effects of the gene Stubble on fitness of experimental populations of Drosophila melanogaster. Genetics 63: 933–948.PubMedGoogle Scholar
  57. Rio, D. C, 1990. Molecular mechanisms regulating Drosophila P element transposition, in Annual Review of Genetics 24: 543–578 edited by J. G. Sandalios. Annual Review Inc., New York.Google Scholar
  58. Robertson, H. M., C. R. Preston, R. W. Phillips, D. M. Johnson-Schlitz, W. K. Benz & W. R. Engels, 1988. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118: 461–470.PubMedGoogle Scholar
  59. Roiha, H., G. M. Rubin & K. O'Hare, 1988. P element insertions and rearrangements at the singed locus of Drosophila melanogaster. Genetics 119: 75–83.PubMedGoogle Scholar
  60. Rose, M. R., 1990. Evolutionary genetics of aging in Drosophila, pp. 41–54 in Genetic Effects on Ageing II, edited by D. E. Harrison. The Telford Press, Inc. Caldwell, New Jersey.Google Scholar
  61. Rubin, G. M., 1983. Dispersed repetitive DNA's in Drosophila, pp. 329–361 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press, New York.Google Scholar
  62. Sankaranarayanan, K., 1988. Mobile genetic elements, spontaneous mutations, and the assessment of genetic radiation hazards in man, pp. 319–336 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  63. Seperack, P. K., M. C. Strobel, D. J. Corrow, N. A. Jenkins & N. G. Copeland, 1988. Somatic and germ-line reverse mutation rates of the retrovirus-induced dilute coat-color mutation of DBA mice. Proc. Natl. Acad. Sci. USA 85: 189–192.PubMedCrossRefGoogle Scholar
  64. Servomaa, K. & T. Rytomma. 1988. Suicidal death of rat chloroleukeamia cells by activation of the long interspersed repetitive DNA element (LIRn). Cell Tissue Kinet. 21: 33–43.PubMedGoogle Scholar
  65. Shaw, D. D., P. Wilkinson & D. J. Coates, 1983. Increased chromosomal mutation rate after hybridization between two subspecies of grasshoppers. Science 220: 1165–1167.PubMedCrossRefGoogle Scholar
  66. Sokal, R. R. & F. J. Rohlf, 1981. Biometry. W. H. Freeman and Company, San Francisco.Google Scholar
  67. Sved, J. A., L. M. Blackman, A. S. Gilchrist & W. R. Engels, 1991. High levels of recombination induced by homologous P-elements in Drosophila melanogaster. Mol. Gen. Genet. 225: 443–447.PubMedCrossRefGoogle Scholar
  68. Sved, J. A., W. B. Eggleston & W. R. Engels, 1990. Germ-line and somatic recombination induced by in vitro modified P-elements in Drosophila melanogaster. Genetics 124: 331–337.PubMedGoogle Scholar
  69. Syvanen, M., 1984. The evolutionary implications of mobile genetic elements, in Annual Review of Genetics edited by H. L. Roman, A. Campbell and L. M. Sandier. 18: 271–293.Google Scholar
  70. Thompson, J. N., Jr. & R. C. Woodruff, 1980. Increased mutation in crosses between geographically separated strains of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 77: 1059–1062.PubMedCrossRefGoogle Scholar
  71. Thompson, J. N., Jr., R. C. Woodruff & G. B. Schaefer, 1978. An assay of somatic recombination in male recombination lines of Drosophila melanogaster. Genetica 49: 77–80.CrossRefGoogle Scholar
  72. Tsubota, S. & P. Schedl. 1986. Hybrid dysgenesis-induced revertrants of insertions at the 5' end of the rudimentary gene in Drosophila melanogaster: Transposon-induced control mutations. Genetics 114: 165–182.PubMedGoogle Scholar
  73. Venugopal, S., S. N. Guzder & W. A. Deutsch. 1990. Apurinic endonuclease activity from wild-type and repair-deficient mei-9 Drosophila ovaries. Mol. Gen. Genet. 221: 421–426.PubMedCrossRefGoogle Scholar
  74. Voelker, R. A., A. L. Greenleaf, H. Gyrukovics, G. B. Wisely, S. Huang & L. L. Searles, 1984. Frequent imprecise excision among reversions of a P element-caused lethal mutation in Drosophila. Genetics 107: 279–294.PubMedGoogle Scholar
  75. Woodruff, R. C, J. M. Mason, R. Valencia & S. Zimmering, 1985. Chemical mutagenesis testing in Drosophila. V. Results of 53 coded compounds tested for the National Toxicology Program. Environ. Mutagen. 7: 677–702.PubMedCrossRefGoogle Scholar
  76. Woodruff, R. C, J. N. Thompson Jr. & R. F. Lyman, 1979. Intraspecific hybridization and the release of mutator activity. Nature 278: 277–279.PubMedCrossRefGoogle Scholar
  77. Wurgler, F. E., F. H. Sobéis & E. Vogel, 1984. Drosophila as an assay system for detecting genetic changes, pp. 555–601 in Handbook of Mutagenicity Test Procedures, edited by B. J. Kilbey, M. Legator, W. Nichols and C. Ramel. Elsevier Science Publishers, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • R. C. Woodruff
    • 1
  1. 1.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA

Personalised recommendations