Skip to main content

The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster

  • Chapter
Transposable Elements and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 1))

Abstract

Evidence from in situ hybridizations of DNA from the transposable element hobo to polytene salivary gland chromosome squashes reveals that hobo occupies both cytological breakpoints of three of four endemic inversions sampled from natural populations of Drosophila melanogaster in the Hawaiian islands. The fourth endemic inversion has a single hobo insert at one breakpoint. Cosmopolitan inversions on the same chromosomes do not show this association. Frequencies of both endemic and cosmopolitan inversions in Hawaiian populations fall in ranges typical for natural populations of D. melanogaster sampled worldwide, suggesting that these results may be typical of other regions besides Hawaii. This appears to be the first direct demonstration that transposable elements are responsible for causing specific rearrangements found in nature; consequently, it is also the first direct demonstration that chromosome rearrangements can arise in nature in a manner predicted by results of hybrid dysgenic crosses in the laboratory. Possible population genetic and evolutionary consequences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajioka, J. W. & W. F. Eanes, 1989. The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster. Genet. Res. 53: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Aquadro, C. F., S. F. Desse, M. M. Bland, C. H. Langley & C. C. Laurie-Ahlberg, 1986. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114: 1165–1190.

    PubMed  CAS  Google Scholar 

  • Ashburner, M., 1989. Drosophila-A Laboratory Handbook and Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Ashburner, M. & F. Leumeunier, 1976. Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). I. Inversion polymorphisms in Drosophila melanogaster and Drosophila simulans. Proc. R. Soc. Lond. B. 193: 137–1

    Article  PubMed  CAS  Google Scholar 

  • Ault, J. G., Chromosome rearrangement patterns of an SD chromosome (SDKona-2) in Drosophila melanogaster caused by hybrid dysgenesis. Chromosoma.

    Google Scholar 

  • Ault, J. G. & F. Dumapias, 1988. Spontaneous chromosome rearrangements arising in an SD chromosome of Drosophila melanogaster from nature. Genome 30: s31.

    Article  Google Scholar 

  • Belyaeva, E. S., E. V. Ananiev & V. A. Gvozdev, 1984. Distribution of mobile dispersed genes (mdg-1 and mdg-3) in the chromosomes of Drosophila melanogaster. Chromosoma 90: 16–19.

    Article  Google Scholar 

  • Berg, R. L., 1974. A simultaneous mutability arise at the singed locus in two out of three Drosophila melanogaster populations studied in 1973. Dros. Inf. Serv. 51: 100–101.

    Google Scholar 

  • Biémont, C, 1986. Polymorphism of the mdg-l and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393–397.

    Article  Google Scholar 

  • Biémont, C. & A. Aouar, 1987. Copy-number dependent transpositions and excisions of the Mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity 58: 39–47.

    Article  Google Scholar 

  • Biémont, C. & C. Gautier, 1988. Localization polymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity.

    Google Scholar 

  • Biémont, C, C. Gautier & A. Heizmann, 1988. Independent regulation of mobile element copy number in Drosophila melanogaster inbred lines. Chromosoma 96: 291–294.

    Article  Google Scholar 

  • Bingham, P. M. & Z. Zachar, 1989. Retrotransposons and the FB transposon from Drosophila melanogaster, pp. 485–502 in: Mobile DNA, edited by D. Berg and M. Howe, American Society for Microbiology Publications, Washington, D.C.

    Google Scholar 

  • Blackman, R. K. & W. M. Gelbart, 1989. The transposable element hobo of Drosophila melanogaster, pp. 523–529 in: Mobile DNA, edited by D. E. Berg and M. M. Howe, American Society for Microbiology Publications, Washington, D.C.

    Google Scholar 

  • Blackman, R. K., R. Grimalia, M. M. D. Koehler & W. M. Gelbart, 1987. Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49: 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Boussy, I. A., M. J. Healy, J. G. Oakeshott & M. G. Kidwell, 1988. Molecular analysis of the P-M gonadal dysgenesis cline in Eastern Australian Drosophila melanogaster. Genetics 119: 889–902.

    PubMed  CAS  Google Scholar 

  • Brégliano, J. C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in: Mobile Genetic elements, edited by J. A. Shapiro, Academic Press, New York.

    Google Scholar 

  • Bucheton, A., R. Paro, H. M. Sang, A. Pelisson & D. J. Finnegan, 1984. The molecular basis of I-R hybrid dysgenesis: identification, cloning and properties of the I factor. Cell 38: 155–163.

    Article  Google Scholar 

  • Bucheton, A., M. Simonelig, C. Vaury & M. Crozatier, 1986. Sequences similar to the I transposable element involved in I-R hybrid dysgenesis in D. melanogaster occur in other Drosophila species. Nature 322: 650–652.

    Article  CAS  Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & A. Lapid, 1989. A study of ten families of transposable elements of X chromosomes from a population of D. melanogaster. Genet. Res. 54: 112–125.

    Article  Google Scholar 

  • Coyne, J. A., 1989. A test of the role of meiotic drive in fixing a pericentric inversion. Genetics 123: 241–243.

    PubMed  CAS  Google Scholar 

  • Daniels, S. B., A. Chovnick & I. A. Boussy, 1990. Distribution of hobo transposable elements in the genus Drosophila. Mol. Biol. Evol. 7: 589–606.

    PubMed  CAS  Google Scholar 

  • Dowsett, A. P. & M. W. Young, 1982. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc. Natl. Acad. Sci. 79: 4570–4574.

    Article  PubMed  CAS  Google Scholar 

  • Eggleston, W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature 331: 368–370.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. R., 1983. The P family of transposable elements in Drosophila. Ann. Rev. Genet. 17: 315–344.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. R., 1989. P elements in Drosophila, pp. 437–484 in: Mobile DNA, edited by D. Berg and M. Howe, American Society for Microbiology Publications, Washington, D.C.

    Google Scholar 

  • Engels, W. R. & C. R. Preston, 1981. Identifying P factors in Drosophila by means of chromosome breakage hotspots. Cell 26: 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. R. & C. R. Preston, 1984. Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107: 657–678.

    PubMed  CAS  Google Scholar 

  • Finnegan, D. J., 1989. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, pp. 503–517 in: Mobile DNA, edited by D. Berg and M. Howe, American Society for Microbiology Publications, Washington, D.C.

    Google Scholar 

  • Gerasimova, T. I., L. J. Mizrokhi & G. P. Georgiev, 1984. Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309: 714–716.

    Article  Google Scholar 

  • Green, M. M., 1976. Mutable and mutator loci, pp. 929–946 in: The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, Academic Press, London/New York.

    Google Scholar 

  • Haigh, J., 1978. The accumulation of deleterious genes in a population — Muller's ratchet. Theor. Pop. Biol. 14: 251–267.

    Article  CAS  Google Scholar 

  • Hartl, D. L. & Y. Hiraizumi, 1976. Segregation distortion, pp. 615–666 in: The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, Academic Press, New York/London.

    Google Scholar 

  • Hedrick, P. W., 1981. The establishment of chromosomal variants. Evolution 35: 322–332.

    Article  Google Scholar 

  • Hinton, C, 1979. Two mutators and their suppressors in D. ananassae. Genetics 92: 1153–1171.

    PubMed  CAS  Google Scholar 

  • Ish-Horowicz, D., 1982. Transposable elements, hybrid incompatibility and speciation. Nature 299: 676–677.

    Article  PubMed  CAS  Google Scholar 

  • Ives, P. T., 1950. The importance of mutation rate genes in evolution. Evolution 4: 236–252.

    Article  Google Scholar 

  • Jackson, M. S., D. M. Black & G. A. Dover, 1988. Amplification of KP elements associated with the repression of hybrid dysgenesis in Drosophila melanogaster.

    Google Scholar 

  • Knibb, W. R., J. G. Oakeshott & J. B. Gibson, 1981. Chromosome inversion polymorphisms in Drosophila melanogaster. I. Latitudinal clines and associations between inversions in Australian populations. Genetics 98: 833–847.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33; 234–251.

    Article  Google Scholar 

  • Langley, C. H., E. Montgomery, R. Hudson, N. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Lefevre, G., 1976. A photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands, pp. in: The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, Academic Press, New York/London.

    Google Scholar 

  • Leigh-Brown, A. J. & J. E. Moss, 1987. Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genet. Res. 49: 121–1

    Article  Google Scholar 

  • Lemeunier, F., J. R. David, L. Tsacas & M. Ashburner, 1986. The melanogaster species group, pp. 148–257 in: The Genetics and Biology of Drosophila, edited by M. Ashburner, H. L. Carson and J. N. J. Thompson, Academic Press, New York/London.

    Google Scholar 

  • Levitan, M., 1962. Spontaneous chromosome aberrations in Drosophila robusta. Proc. Natl. Acad. Sci. 48: 930–937.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, A. P. & J. F. Y. Brookfield, 1987. Movement of transposable elements other than P elements in a P-M hybrid dysgenic cross. Mol. Gen. Genet. 208: 506–510.

    Article  CAS  Google Scholar 

  • Lim, J., 1988. Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc. Natl. Acad. Sci. 85: 9153–9157.

    Article  PubMed  CAS  Google Scholar 

  • Louis, C. & G. Yannopoulos, 1988. The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster, pp. 205–250 in: Oxford Survey in Eukaryotic Genes, edited by D. J. Finnegan, Oxford University Press, Oxford.

    Google Scholar 

  • Lyttle, T. W., 1989. Is there a role for meiotic drive in karyotype evolution?, pp. in: Genetics, Speciation, and the Founder Principle, edited by L. V. Giddings, K. Y. Kaneshiro and W. W. Anderson, Oxford University Press, New York/Oxford.

    Google Scholar 

  • Lyttle, T. W., 1991. Segregation distorters. Ann. Rev. Genet. 25: 511–557.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., E. F. Fritsch & J. Sambrook, 1982. Molecular Cloning. A laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Mettler, L. E., R. A. Voelker & T. Mukai, 1977. Inversion clines in natural populations of Drosophila melanogaster. Genetics 87: 169–176.

    PubMed  CAS  Google Scholar 

  • Monastirioti, M., P. Hatzopoulos, N. Stamatis, G. Yannopoulos & C. Louis, 1988. Cohabitation of KP and full-length P elements in the genome of strains of Drosophila melanogaster inducing P-M-like hybrid dysgenesis. Mol. Gen. Genet. 215: 94–99.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, E. A. & C. H. Langley, 1983. Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104: 473–483.

    PubMed  CAS  Google Scholar 

  • Montgomery, W. A., B. Charlesworth & C. B. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Naveira, H. & A. Fontdevila, 1985. The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chromosoma 91: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Pascual, L. & G. Périquet, 1991. Distribution of hobo transposable elements in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 8: 282–296.

    PubMed  CAS  Google Scholar 

  • Périquet, G., M. H. Hamelin, Y. Bigot & K. Hu, 1989. Presence +of the deleted hobo element Th in Eurasian populations of Drosophila melanogaster. Genet. Sci. Evol. 21: 107–111.

    Article  Google Scholar 

  • Périquet, G., M. H. Hamelin, R. Kalmes & J. Eeken, 1990. Hobo elements and their deletion-derivative sequences in D. melanogaster and its sibling species D. simulans, D. mauritiana and D. sechellia. Genet. Sel. Evol. 22: 393–402.

    Article  Google Scholar 

  • Potter, S. S., W. J. J. Brorein, P. Dunsmuir & G. M. Rubin, 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17: 415–427.

    Article  PubMed  CAS  Google Scholar 

  • Ronsseray, S. & D. Anxolabéhère, 1987. Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94: 433–440.

    Article  Google Scholar 

  • Rubin, G. M, 1983. Dispersed repetitive DNAs in Drosophila, pp. 329–361 in: Mobile Genetic Elements, edited by J. A. Shapiro, Academic Press, New York.

    Google Scholar 

  • Simmons, M. G., 1986. Gonadal dysgenesis determinants in a natural population of Drosophila melanogaster. Genetics 114: 897–918.

    PubMed  CAS  Google Scholar 

  • Stalker, H. D., 1980. Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing loading and flight activity. Genetics 95: 211–223.

    PubMed  CAS  Google Scholar 

  • Stamatis, N., M. Monastirioti, G. Yannopoulos & C. Louis, 1989. The P-M and the 23.5 MRF (hobo) systems of hybrid dysgenesis in Drosophila melanogaster are independent of each other. Genetics 123: 379–387.

    PubMed  CAS  Google Scholar 

  • Streck, R. D., J. E. MacGaffey & S. K. Beckendorf, 1986. The structure of hobo transposable elements and their site of insertion. EMBO J. 5: 3615–3623.

    PubMed  CAS  Google Scholar 

  • Strobel, E., P. Dunsmuir & G. M. Rubin, 1979. Polymorphisms in the chromosomal locations of elements of the 412, copia, and 297 dispersed repeat families in Drosophila. Cell 17: 429–439.

    Article  PubMed  CAS  Google Scholar 

  • Temin, R. G., B. Ganetzky, P. A. Powers, T. W. Lyttle, S. Pimpinelli, C.-I. Wu & Y. Hiraizumi, 1991. Segregation distorter (SD) in Drosophila melanogaster. Am. Nat. 137: 287–331.

    Article  Google Scholar 

  • Throckmorton, L. H., 1975. The phylogeny, ecology and geography of Drosophila, pp. 421–469 in: Handbook of Genetics, vol. 3: Invertebrates of genetic interest, edited by R. C. King, Plenum, New York.

    Google Scholar 

  • Voelker, R. A., 1974. The genetics and cytology of a mutator factor in Drosophila melanogaster. Mut. Res. 22: 265–276.

    Article  CAS  Google Scholar 

  • Voelker, R. A., T. Mukai & F. M. Johnson, 1977. Genetic Variation in populations of Drosophila melanogaster from the western United States. Genetica 47: 143–148.

    Article  Google Scholar 

  • White, M. J. D., 1978. Modes of Speciation, W. H. Freeman, San Francisco.

    Google Scholar 

  • Yamaguchi, O. & T. Mukai, 1974. Variation of spontaneous occurrence rates of chromosomal aberrations in the second chromosomes of Drosophila melanogaster. Genetics 78: 1209–1221.

    PubMed  CAS  Google Scholar 

  • Yannapoulos, G. & N. Stamatis, 1987. Positive correlation between the occurrence of chromosome breakage and the induction of point mutations associated with male recombination 31.1 MRF system of hybrid dysgenesis in Drosophila melanogaster. Mutat. Res. 176: 37–45.

    Article  Google Scholar 

  • Yannopoulos, G., N. Stamatis & J. C. J. Eeken, 1986. Differences in the cytotype and hybrid dysgenesis inducing abilities of different P strains of Drosophila melanogaster. Experientia 42: 1283–1285.

    Article  Google Scholar 

  • Yannopoulos, G., N. Stamatis, M. Monastirioti, P. Hatzopoulos & C. Louis. 1987. Hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF Cell 49: 487–495.

    CAS  Google Scholar 

  • Yannopoulos, G., A. Zacharopoulou & N. Stamatis, 1982. Unstable chromosome rearrangements associated with male recombination in Drosophila melanogaster. Mutat. Res. 96: 41–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lyttle, T.W., Haymer, D.S. (1993). The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster . In: McDonald, J.F. (eds) Transposable Elements and Evolution. Contemporary Issues in Genetics and Evolution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2028-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2028-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4897-2

  • Online ISBN: 978-94-011-2028-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics