Abstract
All mammalian transposable elements characterized to date appear to be nonrandomly distributed in the mammalian genome. While no element has been found to be exclusively restricted in its chromosomal location, LINE elements and some retrovirus-like elements are preferentially accumulated in G-banding regions of the chromosomes, and in some cases in the sex chromosomes, while SINE elements occur preferentially in R-banding regions. Four mechanisms are presented which may explain the nonrandom genomic distribution of mammalian transposons: i) sequence-specific insertion, ii) S-phase insertion, iii) ectopic excision, and iv) recombinational editing. Some of the available data are consistent with each of these four models, but no single model is sufficient to explain all of the existing data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ariga, T., P. E. Carter & A. E. Davis, 1990. Recombinations between Alu repeat sequences that result in partial deletions within the C1-inhibitor gene. Genomics 8: 607–613.
Baker, R. J. & H. A. Wichman, 1990. Retrotransposon mys is concentrated on the sex chromosomes: implications for copy number containment. Evol. 44: 2083–2088.
Benveniste, R. E., 1985. The contributions of retroviruses to the study of mammalian evolution, pp. 359–417 in Molecular Evolutionary Genetics, edited by R. J. Maclntyre. Plenum Publishing Corporation, New York.
Boyle, A. L., S. G. Ballard & D. C. Ward, 1990. Differential distribution of long and short interspersed element sequences in the mouse genome — Chromosome karyotyping by fluorescence in situ hybridization. Proc. Nat. Acad. Sci. USA 87: 7757–7761.
Bradshaw, V. A. & K. McEntee, 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465–474.
Chen, T. L. & L. Manuelidis, 1989. SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98: 309–316.
Deininger, P. L., 1989. SINEs: short interspersed repeated DNA elements in higher eukaryotes, pp. 619–636 in Mobile DNA, edited by D. E. Berg & M. M. Howe. Am. Soc. Microbiol., Washington, DC.
Friesen, P. D. & M. S. Nissen, 1990. Gene organization and transcription of ted, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol. Cell. Biol. 10: 3067–3077.
Furano, A. V., C. C. Somerville, P. N. Tsichlis & E. D'Ambrosio, 1986. Target sites for the transposition of rat long interspersed repeated DNA elements (LINEs) are not random. Nucl. Acids Res. 14: 3717–3727.
Gardner, M. B., C. A. Kuzak & S. J. O'Brien, 1991. The Lake Casitas wild mouse: evolving genetic resistance to retroviral disease. Trends in Genetics 7: 22–27.
Hardies, S. C, S. L. Martin, C. F. Voliva, C. A. Hutchison III & M. H. Edgell, 1986. An analysis of replacement and synonymous changes in the rodent L1 repeat family. Mol. Biol. Evol. 3: 109–125.
Holmquist, G., 1988. DNA sequences in G-bands and R-bands, pp. 76–121 in Chromosomes and Chromatin, edited by R. W. Adolph. CRC Press, Boca Raton.
Hutchison III, C. A., S. C. Hardies, D. D. Loeb, W. R. Shehee & M. H. Edgell, 1989. LINEs and related retroposons: Long interspersed repeated sequences in the eukaryotic genome, pp. 593–617 in Mobile DNA, edited by D. E. Berg & M. M. Howe. Am. Soc. Microbiol., Washington, DC.
Korenberg, J. R. & M. C. Rykowski, 1988. Human genome organization: Alu, LINEs, and the molecular structure of metaphase chromosome bands. Cell 53: 391–400.
Kuff, E. L., J. E. Fewell, K. K. Lueders, J. A. DiPaolo, S. C. Amsbaugh & N. C. Popescu, 1986. Chromosome distribution of intracisternal A-particle sequences in the Syrian hamster and mouse. Chromosoma 93: 213–219.
Langley, C. H., E. Montgomery, R. Hudson, N. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–235.
Lichter, P., S. A. Ledbetter, D. H. Ledbetter & D. C. Ward, 1990. Fluorescence in situ hybridization with Alu and L1 Polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc. Nat. Acad. Sci. USA 87: 6634–6638.
Manuelidis, L., 1982. Repeated DNA sequences and nuclear structure, pp. 263–285 in Genome Evolution, edited by G. A. Dover & R. B. Flavell. Academic Press, New York.
Manuelidis, L. & T. L. Chen, 1990. A unified model of eukaryotic chromosomes. Cytometry 11: 8–25.
Martin, S. L., 1991. LINES. Current Opinions Genet. Devel. 1: 000–000.
McDonald, J., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.
Meunier-Rotival, M., P. Soriano, G. Cuny, F. Strauss & G. Bernardi, 1982. Sequence organization and genomic distribution of the major family of interspersed repeats of mouse DNA. Proc. Nat. Acad. Sci. USA 79: 355–359.
Paquin, C. D. & V. M. Williamson, 1984. Temperature effects on Ty transposition. Science 226: 53–55.
Pine, D. S., E. C. Bourekas & S. S. Potter, 1988. Mys retrotransposons in Peromyscus leucopus and transgenic Mus museums. Nucl. Acid. Res. 16: 3359–3373.
Rudiger, N. S., P. S. Hansen, M. Jorgensen, O. Faergeman, L. Bolund & N. Gregersen, 1991. Repetitive sequences involved in the recombination leading to deletion of exon-5 of the low-density lipoprotein receptor gene in a patient with familial hypercholesterolemia. Eur. J. Bioch. 198: 107–111.
Sandmeyer, S. B., L. J. Hansen & D. L. Chalker, 1990. Integration specificity of retrotransposons and retroviruscs. Ann. Rev. Genet. 24: 491–518.
Servomaa, K. & T. Rytomaa, 1990. UV light and ionizing radiations cause programmed death of rat chloroleukaemia cells by inducing retropositions of a mobile DNA element (L1Rn). Int. J. Rad. Biol. 57: 331–343.
Soriano, P., M. Meunier-Rotival & G. Bernardi, 1983. The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. Proc. Nat. Acad. Sci. USA 80: 1816–1820.
Stavenhagen, J. B. & D. M. Robins, 1988. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–254.
Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucl. Acid. Res. 13: 4401–4410.
Syvanen, M., 1984. The evolutionary implications of mobile genetic elements. Ann. Rev. Genet. 18: 271–293.
Temin, H. M., 1985. Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retroposons, and retrotranscripts. Mol. Biol. Evol. 2: 455–468.
Wallace, M. R., L. B. Andersen, A. M. Saulino, P. E. Gregory, T. W. Glover & F. S. Collins, 1991. A de novo Alu insertion results in neurofibromatosis type I. Nature 353: 864–866.
Wichman, H. A., D. S. Pine & S. S. Potter, 1985. Mys, a family of mammalian transposable elements isolated by phylogenetic screening. Nature 317: 77–81.
Xiong, Y. & T. H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Wichman, H.A., Van Den Bussche, R.A., Hamilton, M.J., Baker, R.J. (1993). Transposable elements and the evolution of genome organization in mammals. In: McDonald, J.F. (eds) Transposable Elements and Evolution. Contemporary Issues in Genetics and Evolution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2028-9_11
Download citation
DOI: https://doi.org/10.1007/978-94-011-2028-9_11
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-010-4897-2
Online ISBN: 978-94-011-2028-9
eBook Packages: Springer Book Archive