Skip to main content

Finite Geometry and the Table of Real Clifford Algebras

  • Conference paper
  • 459 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 55))

Abstract

Associated with the real Clifford algebra Cl(p, q), p + q = n, is the finite Dirac group G(p,q) of order 2n+1. The group V n =G(p, q)/±1, viewed additively, is an n-dimensional vector space over GF(2) = 0, 1} which comes equipped with a quadratic form Q and associated alternating bilinear form B. The finite geometry of V n , B, Q,in part familiar, in part less so, is described, and is then used in conjunction with the representation theory of G(p, q) to give a pleasantly clean derivation of the well-known table, [9], of the algebras Cl(p, q). In particular the finite geometry highlights the “antisymmetry” of the table about the column q - p = 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artin, E. (1957), Geometric Algebra. Interscience, New York.

    MATH  Google Scholar 

  2. Braden, H.W. (1985) “N-dimensional spinors: their properties in terms of finite groups”. J. Math. Phys. 26, 613–620.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Dye, R.H. (1992) “Maximal sets of non-polar points of quadrics and symplectic polarities over GF(2)”. Geom. Ded. 44, 281–293.

    Article  MathSciNet  MATH  Google Scholar 

  4. Eckmann, B. (1942) “Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratishcher Formen”. Comment. Math. Helv. 15, 358–366.

    Article  Google Scholar 

  5. Eddington, A.S. (1936) Relativity Theory of Protons and Electrons. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  6. Frenkel, I., Lepowsky, J. & Meurman A. (1988), Vertex Operator Algebras and the Monster. Academic Press, San Diego.

    MATH  Google Scholar 

  7. Griess, R.L. (1973) “Automorphisms of extra special groups and non vanishing degree 2 co-homology”. Pacific. J. Math. 48, 403–422.

    MathSciNet  MATH  Google Scholar 

  8. Hirschfeld, J.W.P. & Thas, J.A. (1991), General Galois Geometries, Clarendon, Oxford.

    MATH  Google Scholar 

  9. Porteous, I.R. (1981), Topological Geometry. Cambridge Univ. Press, Cambridge.

    Book  MATH  Google Scholar 

  10. Quillen, D. (1971) “The mod 2 cohomology ring of extra-special 2-groups and the spinor groups”. Math. Ann. 194, 197–212.

    Article  MathSciNet  MATH  Google Scholar 

  11. Shaw, R. (1986) “The ten classical types of group representations”. J. Phys. A: Math. Gen. 19, 35–44.

    Article  ADS  MATH  Google Scholar 

  12. Shaw, R. (1993) “Finite geometry, Dirac groups, and the table of real Clifford algebras”. Hull Math. Res. Repts. VI, No 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Kluwer Academic Publishers

About this paper

Cite this paper

Shaw, R. (1993). Finite Geometry and the Table of Real Clifford Algebras. In: Brackx, F., Delanghe, R., Serras, H. (eds) Clifford Algebras and their Applications in Mathematical Physics. Fundamental Theories of Physics, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2006-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2006-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2347-1

  • Online ISBN: 978-94-011-2006-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics