Skip to main content

Ventricular volume measurement

  • Chapter
Nuclear Cardiology in Everyday Practice

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 146))

Abstract

Several morphological and functional aspects of the heart can be assessed with radionuclide ventriculography. With any methodology a series of images can be obtained that shows changes in volume, shape and situation of the cardiac chambers during the representative cardiac cycle1,2. Much of this information can be assessed by visual analysis of the sequence of images, usually consecutively displayed (in a cinematographic format) to give an idea of the real cardiac motion. However, current computer equipment facilitates the acquisition of several parameters reflecting ventricular function in a less subjective and more reproducible way. This has paramount importance for the follow-up of patients, which is one of the fundamental indications of such studies3, 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mason DT, Ashburn WL, Harbert JC, Cohen LS, Braunwald E. Rapid sequential visualization of the heart and great vessels in man using the wide-field Anger scintillation camera. Circulation 1969; 39: 19–28.

    Article  PubMed  CAS  Google Scholar 

  2. Zaret BL, Strauss HW, Hurlay PJ, Natarajan TK, Pitt B. A noninvasive scinti-photographic method for detecting regional ventricular dysfunction in man. N Engl J Med 1971; 284: 1165–1170.

    Article  PubMed  CAS  Google Scholar 

  3. Rocco TP, Dilsizian V, Fischman A J, Strauss HW. Evaluation of ventricular function in patients with coronary artery disease. J Nucl Med 1989; 30: 1149–1165.

    PubMed  CAS  Google Scholar 

  4. Dilsizian V, Rocco TP, Bonow RO, Fischman AJ, Boucher CA, Strauss HW. Cardiac blood-pool imaging II. Applications in noncoronary disease. J Nucl Med 1990; 31: 10–22.

    PubMed  CAS  Google Scholar 

  5. Rigo P, Chevigne M. Radionuclide angiography: role of the stroke-volume ratio. In: Gerson MC (ed). Cardiac nuclear medicine. New York, McGraw-Hill 1987.

    Google Scholar 

  6. Bashore TM, Shaffer P. Diastolic function. In: Gerson MC (ed). Cardiac nuclear medicine. New York, McGraw-Hill 1987.

    Google Scholar 

  7. Gerson MC. Radionuclide ventriculography: left ventricular volumes and pressure-volume relations. In: Gerson MC. Cardiac nuclear medicine. New York, McGraw-Hill 1987.

    Google Scholar 

  8. McKay RG, Pfeffer MA, Pasternak RC, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 1986; 74: 693–702.

    Article  PubMed  CAS  Google Scholar 

  9. Jeremy RW, Hackworthy RA, Bautovich G, Hutton BF, Harris PJ. Infarct artery perfusion and changes in left ventricular volume in the month after acute myocardial infarction. J Am Coll Cardiol 1987; 9: 989–995.

    Article  PubMed  CAS  Google Scholar 

  10. Warren SE, Royal HD, Markis JE, Grossman W, McKay R. Time course of left ventricular dilation after myocardial infarction: influence of infarct-related artery and succes of coronary thrombolysis. J Am Coll Cardiol 1988; 11: 12–19.

    Article  PubMed  CAS  Google Scholar 

  11. Jeremy RW, Allman KC, Bautovich G, Harris PJ. Patterns of left ventricular dilation during the six months after myocardial infarction. J Am Coll Cardiol 1989; 13: 304–310.

    Article  PubMed  CAS  Google Scholar 

  12. Iskandrian AS. Alternative methods for detecting coronary artery disease. In: Iskandrian AS (ed). Nuclear cardiac imaging: principles and applications. Philadelphia, FA Davis Company 1987.

    Google Scholar 

  13. Slustky R, Watkins J, Costello D. Radionuclide evaluation of the systolic blood pres-sure/end-systolic volume relationship: response to pharmacologic agents in patients with coronary artery disease. Am Heart J 1983; 105: 53.

    Article  Google Scholar 

  14. McKay RG, Aroesty JM, Heller GV, et al. Left ventricular pressure-volume diagrams and end-systolic pressure-volume relations in human beings. J Am Coll Cardiol 1984; 3: 301–312.

    Article  PubMed  CAS  Google Scholar 

  15. Kronenberg MW, Parrish MD, Jenkins DW, et al. Accuracy of radionuclide ventriculography for estimation of left ventricular volume changes and end-systolic pressure-volume relations. J Am Coll Cardiol 1985; 6: 1064–1072.

    Article  PubMed  CAS  Google Scholar 

  16. Gibbons RJ, Clements IP, Zinsmeister AR, Brown ML. Exercise response of systolic pressure to end-systolic volume ratio in patients with coronary artery disease. J Am Coll Cardiol 1987; 10: 33–39.

    Article  PubMed  CAS  Google Scholar 

  17. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 1985; 72: 406–412.

    Article  PubMed  CAS  Google Scholar 

  18. Pfeffer MA, Lamas Ga, Vaugham DE, Parisi A, Braunwald E. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 1988; 319: 80–86.

    CAS  Google Scholar 

  19. Bonow RO. The value of radioisotope blood pool imaging for the evaluation of valvular heart disease. In: Brundage BH ed. Comparative cardiac imaging. Function, flow, anatomy and quantitation. Aspen. Marylan 1990: 329–337.

    Google Scholar 

  20. Iskandrian AS. Cardiac imaging in valvular heart disease. In: Iskandrian AS (ed). Nuclear cardiac imaging: principles and applications. Philadelphia, FA Davis Company 1987.

    Google Scholar 

  21. Dodge HT, Sandler H, Ballew DW, Lord JD. The use of biplane angiocardiography for the measurement of left ventricular volume in man. Am Heart J 1960: 60: 762–776.

    Article  PubMed  CAS  Google Scholar 

  22. Sandler H, Dodge HT. The use of single plane angiocardiograms for the calculation of left ventricular volume in man. Am Heart J 1968; 75: 325–334.

    Article  PubMed  CAS  Google Scholar 

  23. Dodge HT, Sandler H, Baxley WA, Henley RR. Usefulness and limitations of radiographic methods for determining left ventricular volume. Am J Cardiol 1966; 18: 10–24.

    Article  PubMed  CAS  Google Scholar 

  24. Bommer W, Chun T, Kwan L, Neumann A, Mason DT, DeMaria AN. Biplane apex echocardiography versus biplane cineangiography in the assessment of left ventricular volume and function: validation by direct measurements (abstr). Am J Cardiol 1980; 45: 471.

    Article  Google Scholar 

  25. Eaton LW. Maugham WL, Shoukas AA, Weiss JL. Accurate volume determination in the isolated ejecting canine left ventricle by two-dimensional echocardiography. Circulation 1979; 60: 320–326.

    Article  PubMed  CAS  Google Scholar 

  26. Seldin DW, Esser PD, Nichols AB, Ratner SJ, Alderson PO. Left ventricular volume determined from scintigraphy and digital angiography by semi-automated geometric method. Radiology 1983; 149: 809–813.

    PubMed  CAS  Google Scholar 

  27. Massardo T, Gal RA, Grenier RP, Schmidt DH, Port SC. Left ventricular volume calculation using a count-based ratio method applied to multigated radionuclide angiography. J Nucl Med 1990; 31: 450–456.

    PubMed  CAS  Google Scholar 

  28. Iskandrian AS. Cardiac imaging in acute myocardial infarction. In Iskandrian AS (ed). Nuclear cardiac imaging. Philadelphia, FA Davis Company 1987.

    Google Scholar 

  29. Sullivan RW, Bergerson DA, Vetter WR, Hyatt KH, Naughton VH, Vogel JM. Peripheral venous scintillation angiography in determination of left ventricular volume in man. Am J Cardiol 1971; 28: 563–567.

    Article  PubMed  CAS  Google Scholar 

  30. Ashburn W, Kastu KW, Karliner J, Peterson F, Sobel B. Left ventricular ejection fraction and volume determinations by radionuclide angiography. Semin Nucl Ned 1973; 3: 165–176.

    Article  CAS  Google Scholar 

  31. Aguirre JM, Rodríguez E, Bóveda FJ, Urrengoetxea J, Arzubiaga J, Iriarte M. Ventriculografia isotôpica en esfuerzo en la evaluaciôn de la insuficiencia aôrtica crônica. Rev Esp Cardiol 1988; 41: 84–88.

    PubMed  Google Scholar 

  32. Mena IG. Short-lived generator-produced radiopharmaceuticals: Current satatus and future applications. In: Lyons KP (ed). Cardiovascular nuclear medicine. Norwalk, Connecticut, Apple-ton and Lange 1988.

    Google Scholar 

  33. Maublant J, Bailly P, Mestas D, et al. Feasibility of gated single photon emission transaxial tomography of the the cardiac blood pool. Radiology 1982; 146: 837–839.

    Google Scholar 

  34. Tamaki N, Mukai T, Ishii Y, et al. Multiaxial tomography of heart chambers by gated blood-pool emission computed tomography using a rotating gamma camera. Radiology 1983; 174: 547–554.

    Google Scholar 

  35. Corbett JR, Jansen DE, Lewis SE, et al. Tomographic gated blood pool radionuclide ventriculography: analysis of wall motion and left ventricular volumes in patients with coronary artery disease. J Am Coll Cardiol 1985; 6: 349–358.

    Article  PubMed  CAS  Google Scholar 

  36. Caputo GR, Graham MM, Brust KD, et al. Measurement of left ventricular volume using single-photon emission computed tomography. Am J Cardiol 1985; 56: 781–786.

    Article  PubMed  CAS  Google Scholar 

  37. Folks R, Banks L, Plankey M, et al. Cardiovascular SPECT. J Nucl Med Technol 1985; 13: 150–161.

    Google Scholar 

  38. DeVernejoul P, Delaloye B, DiGregorio V, Kellershohn C. Mesure du débit cardiaque et des volumes ventriculaires par radiocardiographie. Rev Fr Etudes Clin Biol 1964; 9: 693–715.

    CAS  Google Scholar 

  39. Donato L. Basic concepts of radiocardiography. Semin Nucl Med 1973; 3: 111–130.

    Article  PubMed  CAS  Google Scholar 

  40. Angel J, Anivarro I. Cateterismo cardiaco. In: Soler Soler J, Bayés de Luna A (ed). Cardio-logia. Barcelona, Doyma 1986.

    Google Scholar 

  41. Harpen MD, Dubuisson RL, Head GB, Parmley LF, Jones TB, Robinson AE. Determination of left-ventricular volume from first-pass kinetics of labeled red cells. J Nucl Med 1983; 24: 98–103.

    PubMed  CAS  Google Scholar 

  42. Nusymowitz ML, Benedetto AR, Walsh RA, Starling MR. First-pass Anger camera radiography: biventricular ejection fraction, flow and volume measurements. J Nucl Med 1987; 28: 950–959.

    Google Scholar 

  43. Kelbaek H, Hartling OJ, Skagen K, Munck O, Henriksen O, Godtfredsen J. First-pass radionuclide determination of cardiac output: an improved gamma camera method. J Nucl Med 1987; 28: 1330–1334.

    PubMed  CAS  Google Scholar 

  44. Benedetto AR, Nusymowitz ML. Correlation of right and left ventricular ejection fraction and volume measurements. J Nucl Med 1988; 29: 1114–1117.

    PubMed  CAS  Google Scholar 

  45. Slutsky R, Karliner J, Ricci D, et al. Left ventricular volumes by gated equilibrium radionuclide angiography: a new method. Circulation 1979; 60: 556–571.

    Article  PubMed  CAS  Google Scholar 

  46. Dehmer GJ, Lewis SE, Hillis LD, et al. Nongeometric determination of left ventricular volumes from equilibrium blood pool scans. Am J Cardiol 1980; 45: 293–300.

    Article  PubMed  CAS  Google Scholar 

  47. Burow RD, Wilson MF, Heath PW, Corn CR, Amil A, Thadani U. Influence of attenuation on radionuclide volume determinations. J Nucl Med 1982; 23: 781–785.

    PubMed  CAS  Google Scholar 

  48. Maurer AH, Siegel JA, Denenberg BS, et al. Absolute left ventricular volume from gated blood pool imaging with use of esophageal transmission measurement. Am J Cardiol 1983; 51: 853–858.

    Article  PubMed  CAS  Google Scholar 

  49. Siegel JA, Wu RK, Maurer AH. The buildup factor: effect of scatter on absolute volume determination. J Nucl Med 1985; 26: 390–394.

    PubMed  CAS  Google Scholar 

  50. Siegel JA. The effect of source size on the buildup factor calculation of absolute volume. J Nucl Med 1985; 26: 1319–1322.

    PubMed  CAS  Google Scholar 

  51. Castell J, Fraile M, Worner F, Candell J, Verdtj J, Ortega D. Absolute left ventricular volume measurement by RNA: comparison of four methods (abstr). Eur J Nucl Med 1989; 15: 476.

    Google Scholar 

  52. Estorch M, Carrió I, Artigas A, et al. Volúmenes ventriculares absolutos y gasto cardíaco en reposo y esfuerzo mediante ventriculografia isotópica. Rev Esp Med Nuclear 1987; 6: 49–54.

    Google Scholar 

  53. Estorch M, Carrió I, Artigas A, et al. Volúmenes ventriculares absolutos y gasto cardíaco por ventriculografía isotópica. Rev Esp Cardiol 1988; 41: 97–101.

    PubMed  Google Scholar 

  54. Estorch M, Carrió I, Artigas A, et al. Determinación de los volúmenes biventriculares por ventriculografía isotóica. Respuesta flsio-lógica al ejercicio. Med Clin (Bare) 1988; 90: 237–240.

    CAS  Google Scholar 

  55. Links JM, Becker LC, Shindledecker JG, et al. Measurement of absolute left ventricular volume from gated blood pool studies. Circulation 1982; 65: 82–90.

    Article  PubMed  CAS  Google Scholar 

  56. Verani MS, Gaeta J, LeBlanc AD, et al. Validation of left ventricular volume measurements by radionuclide angiography. J Nucl Med 1985; 26: 1394–1401.

    PubMed  CAS  Google Scholar 

  57. Pezard P, Geslin P, Meur F, Annaix C, Jallet P, Tadei A. Détermination des volumes ventriculaires gauches par angio-scintigraphie cardiaque à l’équilibre. Confrontation à la méthode radiologique. Arch Mal Coeur 1985; 78; 319–326.

    PubMed  CAS  Google Scholar 

  58. Melin JA, Wijns W, Robert A, et al. Validation of radionuclide cardiac output measurements during exercise. J Nucl Med 1985; 26: 1386–1393.

    PubMed  CAS  Google Scholar 

  59. Dell’Italia LJ, Starling MR, Walsh RA, Badke FR, Lasher JC, Blumhardt R. Validation of attenuation-corrected equilibrium radionuclide angiographic determinations of right ventricular volume: comparison with cast-validated biplane cineventriculography. Circulation 1985; 72; 317–326.

    Article  PubMed  Google Scholar 

  60. Thomsen JH, Patel AK, Rowe BR, et al. Estimation of absolute left ventricular volume from gated radionuclide ventriculograms. A method using phase image assisted automated edge detection and two-dimensional echocardiography. Chest 1983; 84: 6–13.

    Article  PubMed  CAS  Google Scholar 

  61. Rabinovitch MA, Kalff V, Koral K, Chan W, et al. Count-based left ventricular volume determinations utilizing a left posterior oblique view for attenuation correction. Radiology 1984; 150: 813–818.

    PubMed  CAS  Google Scholar 

  62. Bourguignon MH, Schindledecker JG, Carey GA, et al. Quantification of left ventricular volume in gated equilibrium radioventri-culography. Eur J Nucl Med 1981; 6: 349–353.

    PubMed  CAS  Google Scholar 

  63. Delcourt E, Franken P, Lenaers A. Measurement of left-ventricular volumes using an internal standard. Eur J Nucl Med 1985; 11: 123–126.

    Article  PubMed  CAS  Google Scholar 

  64. Massie BM, Kramer BL, Gertz EW, Hendreson SG. Radionuclide measurement of left ventricular volume: comparison of geometric and counts-based methods. Circulation 1982; 65: 725–730.

    Article  PubMed  CAS  Google Scholar 

  65. Warren SE, McKay RG, Aroesty JM, Heller GV, Kolodny GM, Royal HD. Comparison of methods for determining absolute left ventricular volumes from radionuclide ventriculography. Am J Physiol Imaging 1987; 2: 24–32.

    PubMed  CAS  Google Scholar 

  66. Palacios I, Goldman M, Aretz T, et al. Comparison of contrast x-ray biplane cineangiography and technetium-99m radionuclide scans measurement of ventricular volumes in human autopsy hearts. Am Heart J 1986; 112: 1032–1038.

    Article  PubMed  CAS  Google Scholar 

  67. Jeremy R, Tokuyasu Y, Choong CYP, et al. The reproducibility of nongeometric analysis of cardiac output and left ventricular volume by radionuclide angiography. Am Heart J 1985; 110: 1020–1026.

    Article  PubMed  CAS  Google Scholar 

  68. Starling MR, Dell’Italia LJ, Walsh RA, Little WC, Benedetto AR, Nusymowitz ML. Accurate estimates of absolute left ventricular volumes from equilibrium redionuclide angiographic count data using a simple geometric attenuation correction. J Am Coll Cardiol 1984; 3: 789–798.

    Article  PubMed  CAS  Google Scholar 

  69. Burns RJ, Druk MN, Woodward S, Houle S, McLaughlin P. Repeatability of estimates left-ventricular volume from blood-pool counts: concise communication. J Nucl Med 1983; 24: 775–781.

    PubMed  CAS  Google Scholar 

  70. Wagner RH, Halama JR, Henkin RE, Dillehay GL, Sobotka PA. Errors in the determination of left ventricular functional parameters. J Nucl Med 1989; 30: 1870–1874.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castell-Conesa, J. (1994). Ventricular volume measurement. In: Candell-Riera, J., Ortega-Alcalde, D. (eds) Nuclear Cardiology in Everyday Practice. Developments in Cardiovascular Medicine, vol 146. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1984-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1984-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4876-7

  • Online ISBN: 978-94-011-1984-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics