Advertisement

Canonical Quantum Gravity and the Problem of Time

  • C. J. Isham
Part of the NATO ASI Series book series (ASIC, volume 409)

Abstract

The aim of this paper is to provide a general introduction to the problem of time in quantum gravity. This problem originates in the fundamental conflict between the way the concept of ‘time’ is used in quantum theory, and the role it plays in a diffeomorphism-invariant theory like general relativity. Schemes for resolving this problem can be sub-divided into three main categories: (I) approaches in which time is identified before quantising; (II) approaches in which time is identified after quantising; and (III) approaches in which time plays no fundamental role at all. Ten different specific schemes are discussed in this paper which also contain an introduction to the relevant parts of the canonical decomposition of general relativity.

Keywords

Quantum Theory Quantum Gravity Poisson Bracket Canonical Variable Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, A. (1990), ‘Identifying decohering paths in closed quantum systems’. preprint.Google Scholar
  2. Albrecht, A. (1991), ‘Investigating decoherence in a simple system’. preprint.Google Scholar
  3. Albrecht, A. (1992), Two perspectives on a decohering spin, in J. Halliwell, J. Perez Mercader & W. Zurek, eds, ‘Physical Origins of Time Asymmetry’, Cambridge University Press, Cambridge.Google Scholar
  4. Alvarez, E. (1989), ‘Quantum gravity: an introduction to some recent results’, Rev. Mod. Phys. 61, 561 - 604.ADSCrossRefGoogle Scholar
  5. Arnowitt, R., Deser, S. & Misner, C. (1959a), ‘Dynamical structure and definition of energy in general relativity’, Phys. Rev. 116, 1322–1330.MathSciNetADSCrossRefGoogle Scholar
  6. Arnowitt, R., Deser, S. & Misner, C. (1959b), ‘Quantum theory of gravitation: General formalism and linearized theory’, Phys. Rev. 113, 745 - 750.ADSCrossRefzbMATHGoogle Scholar
  7. Arnowitt, R., Deser, S. & Misner, C. (1960a), ‘Canonical variables for general relativity’, Phys. Rev. 117, 1595–1602.MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. Arnowitt, R., Deser, S. & Misner, C. (1960b), ‘Consistency of the canonical reduction of general relativity’, J. Math. Phys. 1, 434 - 439.MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. Arnowitt, R., Deser, S. & Misner, C. (1960c), ‘Energy and the criteria for radiation in general relativity’, Phys. Rev. 118, 1100–1104.MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. Arnowitt, R., Deser, S. & Misner, C. (1960d), ‘Finite self-energy of classical point particles’, Phys. Rev. Lett. 4, 375–377.ADSCrossRefGoogle Scholar
  11. Arnowitt, R., Deser, S. & Misner, C. (1961a), ‘Coordinate invariance and energy expressions in general relativity’, Phys. Rev. 122, 997–1006.MathSciNetADSCrossRefGoogle Scholar
  12. Arnowitt, R., Deser, S. & Misner, C. (1961b), ‘Wave zone in general relativity’, Phys. Rev. 121, 1556–1566.MathSciNetADSCrossRefGoogle Scholar
  13. Arnowitt, R., Deser, S. & Misner, C. (1962), The dynamics of general relativity, in L. Witten, ed., ‘Gravitation: An Introduction to Current Research’, Wiley, New York, pp. 227–265.Google Scholar
  14. Ashtekar, A. (1986), ‘New variables for classical and quantum gravity’, Phys. Rev. Lett. 57, 2244–2247.MathSciNetADSCrossRefGoogle Scholar
  15. Ashtekar, A. (1987), ‘New Hamiltonian formulation of general relativity’, Phys. Rev. D36, 1587–1602.MathSciNetADSGoogle Scholar
  16. Ashtekar, A. (1991), Lectures on Non-Perturbative Canonical Gravity, World Scientific Press, Singapore.zbMATHGoogle Scholar
  17. Ashtekar, A. & Stachel, J., eds (1991), Conceptual Problems of Quantum Gravity, Birkhäuser, Boston.zbMATHGoogle Scholar
  18. Baierlein, R., Sharp, D. Si Wheeler, J. (1962), ‘Three-dimensional geometry as carrier of information about time’, Phys. Rev. 126, 1864–1865.MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. Banks, T. (1985), ‘TCP, quantum gravity, the cosmological constant and all that’, Nucl. Phys. B249, 332–360.ADSCrossRefGoogle Scholar
  20. Barbour, J. (1990), ‘Time, gauge fields, and the Schrädinger equation in quantum cosmology’. Preprint.Google Scholar
  21. Barbour, J. & Smolin, L. (1988), ‘Can quantum mechanics be sensibly applied to the universe as a whole?’. Yale University preprint.Google Scholar
  22. Barvinsky, A. (1991), ‘Unitarity approach to quantum cosmology’. University of Alberta preprint.Google Scholar
  23. Bergmann, P. & Komar, A. (1972), ‘The coordinate group of symmetries of general relativity’, Int. J. Mod. Phys. 5, 15–28.MathSciNetGoogle Scholar
  24. Blencowe, M. (1991), ‘The consistent histories interpretation of quantum fields in curved spacetime’, Ann. Phys. (NY) 211, 87–111.MathSciNetADSCrossRefGoogle Scholar
  25. Blyth, W. Si Isham, C. (1975), ‘Quantisation of a Friedman universe filled with a scalar field’, Phys. Rev. D11, 768–778.MathSciNetADSGoogle Scholar
  26. Bohr, N. & Rosenfeld, L. (1933), ‘Zur frage der messbarkeit der elektromagnetischen feldgrossen’, Kgl. Danek Vidensk. Selsk. Math.-fys. Medd. 12, 8.Google Scholar
  27. Bohr, N. & Rosenfeld, L. (1978), On the question of the measurability of electromagnetic field quantities (English translation), in R. Cohen & J. Stachel, eds, ‘Selected Papers by Léon Rosenfeld’, Reidel, Dordrecht.Google Scholar
  28. Brout, R. (1987), ‘On the concept of time and the origin of the cosmological temperature’, Found. Phys. 17, 603 - 619.MathSciNetADSCrossRefGoogle Scholar
  29. Brout, R. & Venturi, G. (1989), ‘Time in semiclassical gravity’, Phys. Rev. D39, 2436–2439.ADSGoogle Scholar
  30. Brout, R., Horowitz, G. & Wiel, D. (1987), ‘On the onset of time and temperature in cosmology’, Phys. Lett. B192, 318–322.ADSGoogle Scholar
  31. Brown, J. & York, J. (1989), ‘Jacobi’s action and the recovery of time in general relativity’, Phys. Rev. D40, 3312–3318.MathSciNetADSGoogle Scholar
  32. Caldeira, A. & Leggett, A. (1983), ‘Path integral approach to quantum Brownian motion’, Physica Al21, 587–616.MathSciNetADSGoogle Scholar
  33. Carlip, S. (1990), ‘Observables, gauge invariance, and time in 2 + 1 dimensional quantum gravity’, Phys. Rev. D42, 2647–2654.MathSciNetADSGoogle Scholar
  34. Carlip, S. (1991), Time in 2 + 1 dimensional quantum gravity, in ‘Proceedings of the Banff Conference on Gravitation, August 1990’.Google Scholar
  35. Castagnino, M. (1988), ‘Probabilistic time in quantum gravity’, Phys. Rev. D39, 2216–2228.MathSciNetADSGoogle Scholar
  36. Coleman, S. (1988), ‘Why is there something rather than nothing: A theory of the cosmological constant’, Nucl. Phys. B310, 643 - 668.ADSCrossRefGoogle Scholar
  37. Collins, P. & Squires, E. (1992), ‘Time in a quantum universe’. In press, Foundations of Physics.Google Scholar
  38. Deutsch, D. (1990), ‘A measurement process in a stationary quantum system’. Oxford University preprint.Google Scholar
  39. DeWitt, B. (1962), The quantization of geometry, in L. Witten, ed., ‘Gravitation: An Introduction to Current Research’, Wiley, New York.Google Scholar
  40. DeWitt, B. (1965), Dynamical Theory of Groups and Fields, Wiley, New York.zbMATHGoogle Scholar
  41. DeWitt, B. (1967a), ‘Quantum theory of gravity. I. The canonical theory’, Phys. Rev. 160, 1113–1148.ADSCrossRefzbMATHGoogle Scholar
  42. DeWitt, B. (1967b), ‘Quantum theory of gravity. II. The manifestly covariant theory’, Phys. Rev. 160, 1195–1238.ADSCrossRefGoogle Scholar
  43. DeWitt, B. (1967c), ‘Quantum theory of gravity. III. Applications of the covariant theory’, Phys. Rev. 160, 1239–1256.ADSCrossRefGoogle Scholar
  44. Dirac, P. (1958a), ‘Generalized Hamiltonian dynamics’, Proc. Royal Soc. of London A246, 326–332.MathSciNetADSCrossRefGoogle Scholar
  45. Dirac, P. (1958b), ‘The theory of gravitation in Hamiltonian form’, Proc. Royal Soc. of London A246, 333–343.MathSciNetADSCrossRefGoogle Scholar
  46. Dirac, P. (1965), Lectures on Quantum Mechanics, Academic Press, New York.Google Scholar
  47. Dowker, H. & Halliwell, J. (1992), ‘The quantum mechanics of history: The decoherence functional in quantum mechanics’, Phys. Rev.Google Scholar
  48. Duff, M. (1981), Inconsistency of quantum field theory in a curved spacetime, in C. Isham, R. Penrose &D. Sciama, eds, ‘Quantum Gravity 2: A Second Oxford Symposium’, Clarendon Press, Oxford, pp. 81–105.Google Scholar
  49. Earman, J. & Norton, J. (1987), ‘What price spacetime substantialism?’, Brit. Jour. Phil. Science 38, 515–525.MathSciNetCrossRefGoogle Scholar
  50. Fredenhagen, K. & Haag, R. (1987), ‘Generally covariant quantum field theory and scaling limits’, Comm. Math. Phys 108, 91–115.MathSciNetADSCrossRefzbMATHGoogle Scholar
  51. Englert, F. (1989), ‘Quantum physics without time’, Phys. Lett. B228, 111–114.MathSciNetADSGoogle Scholar
  52. Eppley, K. & Hannah, E. (1977), ‘The necessity of quantizing the gravitational field’, Found. Phys. 7, 51–68.ADSCrossRefGoogle Scholar
  53. Fischer, A. & Marsden, J. (1979), The initial value problem and the dynamical formulation of general relativity, in S. Hawking & W. Israel, eds, ‘General Relativity: An Einstein Centenary Survey’, Cambridge University Press, Cambridge, pp. 138–211.Google Scholar
  54. Friedman, J. Si Higuchi, A. (1989), ‘Symmetry and internal time on the superspace of asymptotically flat geometries’, Phys. Rev. D41, 2479–2486.MathSciNetADSGoogle Scholar
  55. Fulling, S. (1990), ‘When is stability in the eye of the beholder? Comments on a singular initial value problem for a nonlinear differential equation arising in semiclassical cosmology’, Phys. Rev. D42, 4248 - 4250.MathSciNetADSGoogle Scholar
  56. Gell-Mann, M. (1987), ‘Superstring theory—closing talk at the 2nd Nobel Symposium on Particle Physics’, Physica Scripta T15, 202–209.MathSciNetADSCrossRefGoogle Scholar
  57. Gell-Mann, M. Si Hartle, J. (1990a), Alternative decohering histories in quantum mechanics, in K. Phua Si Y. Yamaguchi, eds, ‘Proceedings of the 25th International Conference on High Energy Physics, Singapore, August, 2–8, 1990’, World Scientific, Singapore.Google Scholar
  58. Gell-Mann, M. Si Hartle, J. (1990b), Quantum mechanics in the light of quantum cosmology, in S. Kobayashi, H. Ezawa, Y. Murayama & S. Nomura, eds, ’Proceedings of the Third International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology’, Physical Society of Japan, Tokyo, pp. 321–343.Google Scholar
  59. Gell-Mann, M. Si Hartle, J. (1990c), Quantum mechanics in the light of quantum cosmology, in W. Zurek, ed., ‘Complexity, Entropy and the Physics of Information, SFI Studies in the Science of Complexity, Vol. VIII’, Addison-Wesley, Reading, pp. 425–458.Google Scholar
  60. Gell-Mann, M. Si Hartle, J. (1992), ‘Classical equations for quantum systems’. UCSB preprint UCSBTH-91–15.Google Scholar
  61. Gerlach, U. (1969), ‘Derivation of the ten Einstein field equations from the semiclassical approximation to quantum geometrodynamics’, Phys. Rev. 117, 1929–1941.ADSCrossRefGoogle Scholar
  62. Giddings, S. Si Strominger, A. (1988), ‘Baby universes, third quantization and the cosmological constant’, Nucl. Phys. B231, 481–508.Google Scholar
  63. Greensite, J. (1990), ‘Time and probability in quantum cosmology’, Nucl. Phys. B342, 409–429.MathSciNetADSCrossRefGoogle Scholar
  64. Greensite, J. (1991a), ‘Ehrenfests’ principle in quantum-gravity’, Nucl. Phys. B351, 749–766.MathSciNetADSCrossRefGoogle Scholar
  65. Greensite, J. (1991b), ‘A model of quantum gravitational collapse’, Int. J. Mod. Phys. A6, 2693–2706.ADSGoogle Scholar
  66. Griffiths, R. (1984), ‘Consistent histories and the interpretation of quantum mechanics’, J. Stat. Phys. 36, 219–272.ADSCrossRefzbMATHGoogle Scholar
  67. Groenwold, H. (1946), ‘On the principles of elementary quantum mechanics’, Physica 12, 405–460.MathSciNetADSCrossRefGoogle Scholar
  68. Hajicek, P. & Kuchar, K. (1990a), ‘Constraint quantization of parametrized relativistic gauge systems in curved spacetimes’, Phys. Rev. D41, 1091–1104.MathSciNetADSGoogle Scholar
  69. Hajicek, P. & Kuchaf, K. (1990b), ‘Transversal affine connection and quantisation of constrained systems’, J. Math. Phys. 31, 1723–1732.MathSciNetADSCrossRefzbMATHGoogle Scholar
  70. Hâjfcek, P. (1986), ‘Origin of nonunitarity in quantum gravity’, Phys. Rev. D34, 1040–1048.ADSGoogle Scholar
  71. Hâjfcek, P. (1988), ‘Reducibility of parametrised systems’, Phys. Rev. D38, 3639–3647.ADSGoogle Scholar
  72. Hâjfcek, P. (1989), ‘Topology of parametrised systems’, J. Math. Phys. 20, 2488–2497.CrossRefGoogle Scholar
  73. Hâjfcek, P. (1990a), ‘Dirac quantisation of systems with quadratic constraints’, Class. Quan. Gray. 7, 871–886.ADSCrossRefGoogle Scholar
  74. Hâjfcek, P. (1990b), ‘Topology of quadratic super-Hamiltonians’, Class. Quan. Gray. 7, 861–870.ADSCrossRefGoogle Scholar
  75. Hâjfcek, P. (1991), ‘Comment on ‘Time in quantum gravity: An hypothesis“, Phys. Rev. D44, 1337–1338.ADSGoogle Scholar
  76. Halliwell, J. (1987), ‘Correlations in the wave function of the universe’, Phys. Rev. D36, 3626–3640.MathSciNetADSGoogle Scholar
  77. Halliwell, J. (1988), ‘Derivation of the Wheeler-DeWitt equation from a path integral for minisuperspace models’, Phys. Rev. D38, 2468–2481.MathSciNetADSGoogle Scholar
  78. Halliwell, J. (1989), ‘Decoherence in quantum cosmology’, Phys. Rev. D39, 2912–2923.MathSciNetADSGoogle Scholar
  79. Halliwell, J. (1990), ‘A bibliography of papers on quantum cosmology’, Int. J. Mod. Phys. A5, 2473–2494.MathSciNetADSGoogle Scholar
  80. Halliwell, J. (1991a), Introductory lectures on quantum cosmology, in S. Coleman, J. Hartle, T. Piran & S. Weinberg, eds, ‘Proceedings of the Jerusalem Winter School on Quantum Cosmology and Baby Universes’, World Scientific, Singapore.Google Scholar
  81. Halliwell, J. (1991b), The Wheeler-DeWitt equation and the path integral in minisuperspace quantum cosmology, in A. Ashtekar & J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 75–115.Google Scholar
  82. Halliwell, J. (1992a), The interpretation of quantum cosmology models, in’Proceedings of the 13th International Conference on General Relativity and Gravitation, Cordoba, Argentina’.Google Scholar
  83. Halliwell, J. (1992b), ‘Smeared Wigner functions and quantum-mechanical histories’, Phys. Rev.Google Scholar
  84. Halliwell, J. Si Hawking, S. (1985), ‘Origin of structure in the universe’, Phys. Rev. D31, 1777–1791.MathSciNetADSGoogle Scholar
  85. Halliwell, J., Perez-Mercander, J. Si Zurek, W., eds (1992), Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge.Google Scholar
  86. Hartle, J. (1986), Prediction and observation in quantum cosmology, in B. Carter & J. Hartle, eds, ‘Gravitation and Astrophysics, Cargese, 1986’, Plenum, New York.Google Scholar
  87. Hartle, J. (1988a), ‘Quantum kinematics of spacetime. I. Nonrelativistic theory’, Phys. Rev. D37, 2818–2832.MathSciNetADSGoogle Scholar
  88. Hartle, J. (1988b), ‘Quantum kinematics of spacetime. II. A model quantum cosmology with real clocks’, Phys. Rev. D38, 2985–2999.MathSciNetADSGoogle Scholar
  89. Hartle, J. (1991a), The quantum mechanics of cosmology, in S. Coleman, P. Hartle, T. Piran Si S. Weinberg, eds, ‘Quantum Cosmology and Baby Universes’, World Scientific, Singapore.Google Scholar
  90. Hartle, J. (1991b), ‘Spacetime grainings in nonrelativistic quantum mechanics’, Phys. Rev. D44, 3173–3195.MathSciNetADSGoogle Scholar
  91. Hartle, J. & Hawking, S. (1983), ‘Wave function of the universe’, Phys. Rev. D28, 2960–2975.MathSciNetADSGoogle Scholar
  92. Hawking, S. (1982), ‘The unpredictability of quantum gravity’, Comm. Math. Phys 87, 395–416.MathSciNetADSCrossRefzbMATHGoogle Scholar
  93. Hawking, S. (1984a), Lectures in quantum cosmology, in B. DeWitt Si R. Stora, eds, ‘Relativity, Groups and Topology II’, North-Holland, Amsterdam, pp. 333–379.Google Scholar
  94. Hawking, S. (1984b), ‘The quantum state of the universe’, Nucl. Phys. B239, 257–276.MathSciNetADSCrossRefGoogle Scholar
  95. Hawking, S. Si Ellis, G. (1973), The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge.CrossRefzbMATHGoogle Scholar
  96. Hawking, S. Si Page, D. (1986), ‘Operator ordering and the flatness of the universe’, Nucl. Phys. B264, 185–196.MathSciNetADSCrossRefGoogle Scholar
  97. Hawking, S. & Page, D. (1988), ‘How probable is inflation?’, Nucl. Phys. B298, 789–809.MathSciNetADSCrossRefGoogle Scholar
  98. Henneaux, M. & Teitelboim, C. (1989), ‘The cosmological constant and general covariance’, Phys. Lett. B222, 195–199.ADSGoogle Scholar
  99. Higgs, P. (1958), ‘Integration of secondary constraints in quantized general relativity’, Phys. Rev. Lett. 1, 373–375.ADSCrossRefGoogle Scholar
  100. Hojman, S., Kuchar, K. Si Teitelboim, C. (1976), ‘Geometrodynamics regained’, Ann. Phys. (NY) 96, 88–135.MathSciNetADSCrossRefzbMATHGoogle Scholar
  101. Horowitz, G. (1980), ‘Semiclassical relativity: The weak-field limit’, Phys. Rev. D21, 1445–1461.MathSciNetADSGoogle Scholar
  102. Horowitz, G. (1981), Is flat space-time unstable?, in C. Isham, R. Penrose & D. Sciama, eds, ‘Quantum Gravity 2: A Second Oxford Symposium’, Clarendon Press, Oxford, pp. 106–130.Google Scholar
  103. Horowitz, G. & Wald, R. (1978), ‘Dynamics of Einstein’s equations modified by a higher-derivative term’, Phys. Rev. D17, 414–416.MathSciNetADSGoogle Scholar
  104. Horowitz, G. & Wald, R. (1980), ‘Quantum stress energy in nearly conformally flat spacetimes’, Phys. Rev. D21, 1462 - 1465.MathSciNetADSGoogle Scholar
  105. Isenberg, J. & Marsden, J. (1976), ‘The York map is a canonical transformation’, Ann. Phys. (NY) 96, 88–135.CrossRefGoogle Scholar
  106. Isham, C. (1984), Topological and global aspects of quantum theory, inB. DeWitt & R. Stora, eds, ‘Relativity, Groups and Topology II’, North-Holland, Amsterdam, pp. 1062–1290.Google Scholar
  107. Isham, C. (1985), Aspects of quantum gravity, inA. Davies &D. Sutherland, eds, ‘Superstrings and Supergravity: Proceedings of the 28th Scottish Universities Summer School in Physics, 1985’, SUSSP Publications, Edinburgh, pp. 1–94.Google Scholar
  108. Isham, C. (1987), Quantum gravity—grgll review talk, inM. MacCallum, ed., ‘General Relativity and Gravitation: Proceedings of the 11th International Conference on General Relativity and Gravitation’, Cambridge University Press, Cambridge.Google Scholar
  109. Isham, C. (1992), Conceptual and geometrical problems in quantum gravity, in H. Mitter & H. Gausterer, eds, ‘Recent Aspects of Quantum Fields’, Springer-Verlag, Berlin, pp. 123–230.Google Scholar
  110. Isham, C. & Kakas, A. (1984a), ‘A group theoretical approach to the canonical quantisation of gravity: I. Construction of the canonical group’, Class. Quan. Gray. 1, 621–632.MathSciNetADSCrossRefzbMATHGoogle Scholar
  111. Isham, C. Si Kakas, A. (1984b), ‘A group theoretical approach to the canonical quantisation of gravity: II. Unitary representations of the canonical group’, Class. Quan. Gray. 1, 633–650.MathSciNetADSCrossRefzbMATHGoogle Scholar
  112. Isham, C. & Kuchat, K. (1985a), ‘Representations of spacetime diffeomorphisms. I. Canonical parametrised spacetime theories’, Ann Phys. (NY) 164, 288–315.ADSCrossRefzbMATHGoogle Scholar
  113. Isham, C. Si Kuchai, K. (1985b), ‘Representations of spacetime diffeomorphisms. II. Canonical geometrodynamics’, Ann. Phys. (NY) 164, 316–333.ADSCrossRefGoogle Scholar
  114. Isham, C. Si Kuchar, K. (1994), Quantum Gravity and the Problem of Time. In preparation.Google Scholar
  115. Jackiw, R. (1992a), Gauge theories for gravity on a line, in ‘Proceedings of NATO Advanced Study Institute ‘Recent Problems in Mathematical Physics, Salamanca, Spain, 1992“, Kluwer, The Netherlands.Google Scholar
  116. Jackiw, R. (1992b), Update on planar gravity (ti physics of infinite cosmic strings), in H. Sato, ed., ‘Proceedings of the Sixth Marcel Grossman Meeting on General Relativity’, World Scientific, Singapore.Google Scholar
  117. Joos, E. (1986), ‘Why do we observe a classical spacetime?’, Phys. Lett. A116, 6–8.MathSciNetADSGoogle Scholar
  118. Joos, E. (1987), Quantum theory and the emergence of a classical world, in D. Greenberger, ed., ‘New Techniques and Ideas in Quantum Measurement’, New York Academic of Sciences, New York.Google Scholar
  119. Joos, E. Si Zeh, H. (1985), ‘The emergence of classical properties through interaction with the environment’, Zeitschrift für Physik B59, 223–243.ADSGoogle Scholar
  120. Kaup, D. & Vitello, A. (1974), ‘Solvable quantum cosmological models and the importance of quantizing in a special canonical frame’, Phys. Rev. D9, 1648–1655.ADSGoogle Scholar
  121. Kibble, T. (1981), Is a semi-classical theory of gravity viable?, in C. Isham, R. Penrose &D. Sciama, eds, ‘Quantum Gravity 2: A Second Oxford Symposium’, Clarendon Press, Oxford, pp. 63–80.Google Scholar
  122. Kiefer, C. (1987), ‘Continuous measurement of mini-superspace variables by higher multipoles’, Class. Quan. Gray. 4, 1369 - 1382.MathSciNetADSCrossRefGoogle Scholar
  123. Kiefer, C. (1989a), ‘Continuous measurement of intrinsic time by fermions’, Class. Quan. Gray. 6, 561–566.MathSciNetADSCrossRefGoogle Scholar
  124. Kiefer, C. (1989b), ‘Quantum gravity and Brownian motion’, Phys. Lett. A139, 201–203.MathSciNetADSGoogle Scholar
  125. Kiefer, C. (1991), ‘Interpretation of the decoherence functional in quantum cosmology’, Class. Quan. Gray. 8, 379 - 392.MathSciNetADSCrossRefGoogle Scholar
  126. Kiefer, C. (1992), Decoherence in quantum cosmology, in ‘Proceedings of the Tenth Seminar on Relativistic Astrophysics and Gravitation, Postdam, 1991’, World Scientific, Singapore.Google Scholar
  127. Kiefer, C. & Singh, T. (1991), ‘Quantum gravitational corrections to the functional Schrödinger equation’, Phys. Rev. D44, 1067–1076.MathSciNetADSGoogle Scholar
  128. Klauder, J. (1970), Soluble models of guantum gravitation, in M. Carmeli, S. Flicker & Witten, eds, ‘Relativity’, Plenum, New York.Google Scholar
  129. Komar, A. (1979a), ‘Consistent factoring ordering of general-relativistic constraints’, Phys. Rev. D19, 830–833.ADSGoogle Scholar
  130. Komar, A. (1979b), ‘Constraints, hermiticity, and correspondence’, Phys. Rev. D19, 2908–2912.ADSGoogle Scholar
  131. Kuchar, K. (1970), ‘Ground state functional of the linearized gravitational field’, J. Math. Phys. 11, 3322–3344.ADSCrossRefGoogle Scholar
  132. Kuchar, K. (1971), ‘Canonical quantization of cylindrical gravitational waves’, Phys. Rev. D4, 955–985.ADSGoogle Scholar
  133. Kuchar, K. (1972), ‘A bubble-time canonical formalism for geometrodynamics’, J. Math. Phys. 13, 768–781.MathSciNetADSCrossRefGoogle Scholar
  134. Kuchar, K. (1973), Canonical quantization of gravity, in ‘Relativity, Astrophysics and Cosmology’, Reidel, Dordrecht, pp. 237–288.CrossRefGoogle Scholar
  135. Kuchar, K. (1974), ‘Geometrodynamics regained: A Lagrangian approach’, J. Math. Phys. 15, 708–715.MathSciNetADSCrossRefGoogle Scholar
  136. Kuchat, K. (1976a), ‘Dynamics of tensor fields in hyperspace III.’, J. Math. Phys. 17, 801–820.ADSCrossRefGoogle Scholar
  137. Kuchar, K. (1976b), ‘Geometry of hyperspace I.’, J. Math. Phys. 17, 777–791.MathSciNetADSCrossRefGoogle Scholar
  138. Kuchar, K. (1976c), ‘Kinematics of tensor fields in hyperspace II.’, J. Math. Phys. 17, 792–800.MathSciNetADSCrossRefGoogle Scholar
  139. Kuchar, K. (1977), ‘Geometrodynamics with tensor sources IV’, J. Math. Phys.18, 1589–1597.MathSciNetADSCrossRefGoogle Scholar
  140. Kuchar, K. (1981a), Canonical methods of quantisation, in C. Isham, R. Penrose & D. Sciama, eds, ‘Quantum Gravity 2: A Second Oxford Symposium’, Clarendon Press, Oxford, pp. 329–374.Google Scholar
  141. Kuchat, K. (1981b), ‘General relativity: Dynamics without symmetry’, J. Math. Phys. 22, 2640–2654.ADSCrossRefGoogle Scholar
  142. Kuchat, K. (1982), ‘Conditional symmetries in parametrized field theories’, J. Math. Phys. 25, 1647–1661.ADSGoogle Scholar
  143. Kuchai, K. (1986a), ‘Canonical geometrodynamics and general covariance’, Found. Phys. 16, 193–208.ADSCrossRefGoogle Scholar
  144. Kuchai, K. (1986b), ‘Covariant factor ordering for gauge systems’, Phys. Rev. D34, 3044–3057.ADSGoogle Scholar
  145. Kuchai, K. (1986c), ‘Hamiltonian dynamics of gauge systems’, Phys. Rev. D34, 3031–3043.ADSGoogle Scholar
  146. Kuchai, K. (1987), ‘Covariant factor ordering of constraints may be ambiguous’, Phys. Rev. D35, 596–599.ADSGoogle Scholar
  147. Kuchai, K. (1991a), ‘Does an unspecified cosmological constant solve the problem of time in quantum gravity?’, Phys. Rev. D43, 3332–3344.ADSGoogle Scholar
  148. Kuchai, K. (1991b), The problem of time in canonical quantization, in A. Ashtekar & J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 141–171.Google Scholar
  149. Kuchat, K. (1992a), ‘Extrinsic curvature as a reference fluid in canonical gravity’, Phys. Rev. D45, 4443–4457.ADSGoogle Scholar
  150. Kuchai, K. (1992b), Time and interpretations of quantum gravity, in‘Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics’, World Scientific, Singapore.Google Scholar
  151. Kuchai, K. & Ryan, M. (1989), ‘Is minisuperspace quantization valid? Taub in Mixmaster’, Phys. Rev. D40, 3982–3996.ADSGoogle Scholar
  152. Kuchai, K. Si Torre, C. (1989), ‘World sheet diffeomorphisms and the cylindrical string’, J. Math. Phys. 30, 1769–1793.MathSciNetADSCrossRefGoogle Scholar
  153. Kuchai, K. & Torre, C. (1991a), ‘Gaussian reference fluid and the interpretation of geometrodynamics’, Phys. Rev. D43, 419–441.ADSGoogle Scholar
  154. Kuchat, K. & Torre, C. (1991b), ‘Harmonic gauge in canonical gravity’, Phys. Rev. D44, 3116–3123.ADSGoogle Scholar
  155. Kuchai, K. & Torre, C. (1991c), Strings as poor relatives of general relativity, in A. Ashtekar Si J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 326–348.Google Scholar
  156. Lapchinski, V. & Rubakov, V. (1979), ‘Canonical quantization of gravity and quantum field theory in curved spacetime’, Acta. Phys. Pol. B10, 1041.ADSGoogle Scholar
  157. Lee, J. & Wald, R. (1990), Local symmetries and constraints’, J. Math. Phys. 31, 725–743.MathSciNetADSCrossRefzbMATHGoogle Scholar
  158. Linden, N. & Perry, M. (1991), ‘Path integrals and unitarity in quantum cosmology’, Nucl. Phys. B357, 289–307.MathSciNetADSCrossRefGoogle Scholar
  159. Manojlović & Miković (1992), ‘Gauge fixing and independent canonical variables in the ashtekar formulation of general relativity’.Google Scholar
  160. McGuigan, M. (1988), ‘Third quantization and the Wheeler-DeWitt equation’, Phys. Rev. D38, 3031–3051.MathSciNetADSGoogle Scholar
  161. McGuigan, M. (1989), ‘Universe creation from the third quantized vacuum’, Phys. Rev. D39, 2229–2233.MathSciNetADSGoogle Scholar
  162. Mellor, F. (1991), ‘Decoherence in quantum Kaluza-Klein theories’, Nucl. Phys. B353, 291–301.MathSciNetADSCrossRefGoogle Scholar
  163. Misner, C. (1957), ‘Feynman quantization of general relativity’, Rev. Mod. Phys. 29, 497–509.MathSciNetADSCrossRefzbMATHGoogle Scholar
  164. Misner, C. (1992), Minisuperspace, inJ. Klauder, ed., ‘Magic without Magic: John Archibald Wheeler, A Collection of Essays in Honor of his 60th Birthday’, Freeman, San Francisco.Google Scholar
  165. Moller, C. (1962), The energy-momentum complex in general relativity and related problems, in A. Lichnerowicz & M. Tonnelat, eds, ‘Les. Théories Relativistes de la Gravitation’, CNRS, Paris.Google Scholar
  166. Morikawa, M. (1989), ‘Evolution of the cosmic density matrix’, Phys. Rev. D40, 4023–4027.MathSciNetADSGoogle Scholar
  167. Newman, E. & Rovelli, C. (1992), ‘Generalized lines of force as the gauge invariant degrees of freedom for general relativity and Yang-Mills theory’. University of Pittsburgh preprint.Google Scholar
  168. Omnès, R. (1988a), ‘Logical reformulation of quantum mechanics. I. Foundations’, J. Stat. Phys. 53, 893–932.ADSCrossRefzbMATHGoogle Scholar
  169. Omnès, R. (1988b), ‘Logical reformulation of quantum mechanics. II. Interferences and the Einstein-Podolsky-Rosen experiment’, J. Stat. Phys. 53, 933–955.ADSCrossRefGoogle Scholar
  170. Omnès, R. (1988c), ‘Logical reformulation of quantum mechanics. III. Classical limit and irreversibility’, J. Stat. Phys. 53, 957–975.ADSCrossRefGoogle Scholar
  171. Omnès, R. (1989), ‘Logical reformulation of quantum mechanics. III. Projectors in semiclassical physics’, J. Stat. Phys. 57, 357–382.ADSCrossRefGoogle Scholar
  172. Omnès, R. (1990), ‘From Hilbert space to common sense: A synthesis of recent progress in the interpretation of quantum mechanics’, Ann. Phys. (NY) 201, 354–447.ADSCrossRefGoogle Scholar
  173. Omnès, R. (1992), ‘Consistent interpretations of quantum mechanics’, Rev. Mod. Phys. 64, 339–382.ADSCrossRefGoogle Scholar
  174. Padmanabhan, T. (1989a), ‘Decoherence in the density matrix describing quantum three-geometries and the emergence of classical spacetime’, Phys. Rev. D39, 2924–2932.ADSGoogle Scholar
  175. Padmanabhan, T. (1989b), ‘Semiclassical approximations to gravity and the issue of back-reaction’, Class. Quan. Gray. 6, 533–555.MathSciNetADSCrossRefGoogle Scholar
  176. Padmanabhan, T. (1990), ‘A definition for time in quantum cosmology’, Pramana Jour. Phys. 35, L199–L204.ADSCrossRefGoogle Scholar
  177. Page, D. (1986a), ‘Density matrix of the universe’, Phys. Rev. D34, 2267–2271.MathSciNetADSGoogle Scholar
  178. Page, D. (1986b), Hawking’s wave function for the universe, in R. Penrose &C. Isham, eds, ‘Quantum Concepts in Space and Time’, Clarendon Press, Oxford, pp. 274–285.Google Scholar
  179. Page, D. (1989), ‘Time as an inaccessible observable’. ITP preprint NSF-ITP-89–18.Google Scholar
  180. Page, D. (1991), Intepreting the density matrix of the universe, in A. Ashtekar & J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 116–121.Google Scholar
  181. Page, D. & Geilker, C. (1981), ‘Indirect evidence for quantum gravity’, Phys. Rev. Lett. 47, 979–982.MathSciNetADSCrossRefGoogle Scholar
  182. Page, D. Si Hotke-Page, C. (1992), Clock time and entropy, in J. Halliwell, J. PerezMercander & W. Zurek, eds, ‘Physical Origins of Time Asymmetry’, Cambridge University Press, Cambridge.Google Scholar
  183. Page, D. & Wooters, W. (1983), ‘Evolution without evolution: Dynamics described by stationary observables’, Phys. Rev. D27, 2885–2892.ADSGoogle Scholar
  184. Pilati, M. (1982), ‘Strong coupling quantum gravity I: solution in a particular gauge’, Phys. Rev. D26, 2645–2663.MathSciNetADSGoogle Scholar
  185. Pilati, M. (1983), ‘Strong coupling quantum gravity I: solution without gauge fixing’, Phys. Rev. D28, 729–744.MathSciNetADSGoogle Scholar
  186. Randjbar-Daemi, S., Kay, B. Si Kibble, T. (1980), ‘Renormalization of semi-classical field theories’, Phys. Rev. Lett. 91B, 417–420.ADSGoogle Scholar
  187. Rosenfeld, L. (1963), ‘On quantization of fields’, Nucl. Phys. 40, 353–356.MathSciNetCrossRefzbMATHGoogle Scholar
  188. Rovelli, C. (1990), ‘Quantum mechanics without time: A model’, Phys. Rev. D42, 2638–2646.ADSGoogle Scholar
  189. Rovelli, C. (1991a), ‘Ashtekar formulation of general relativity and loop-space nonperturbative quantum gravity: A report.’. Pittsburgh University preprint.Google Scholar
  190. Rovelli, C. (1991b), Is there incompatibility between the ways time is treated in general relativity and in standard quantum theory?, in A. Ashtekar Si J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 126–140.Google Scholar
  191. Rovelli, C. (1991c), ‘Quantum evolving constants. Reply to ‘Comments on time in quantum gravity: An hypothesis“, Phys. Rev. D44, 1339–1341.MathSciNetADSGoogle Scholar
  192. Rovelli, C. (1991d), ‘Statistical mechanics of gravity and the problem of time’. University of Pittsburgh preprint.Google Scholar
  193. Rovelli, C. (1991e), ‘Time in quantum gravity: An hypothesis’, Phys. Rev. D43, 442–456.MathSciNetADSGoogle Scholar
  194. Rovelli, C. & Smolin, L. (1990), ‘Loop space representation of quantum general relativity’, Nucl. Phys. B331, 80–152.MathSciNetADSCrossRefGoogle Scholar
  195. Salisbury, D. & Sundermeyer, K. (1983), ‘Realization in phase space of general coordinate transformations’, Phys. Rev. D27, 740–756.MathSciNetADSGoogle Scholar
  196. Simon, J. (1991), ‘The stability of flat space, semiclassical gravity and higher derivatives’, Phys. Rev. D43, 3308–3316.ADSGoogle Scholar
  197. Singer, I. (1978), ‘Some remarks on the Gribov ambiguity’, Comm. Math. Phys 60, 7–12.MathSciNetADSCrossRefzbMATHGoogle Scholar
  198. Singh, T. Si Padmanabhan, T. (1989), ‘Notes on semiclassical gravity’, Ann. Phys. (NY) 196, 296–344.MathSciNetADSCrossRefzbMATHGoogle Scholar
  199. Smarr, L. Si York, J. (1978), ‘Kinematical conditions in the construction of space-time’, Phys. Rev. D17, 2529–2551.MathSciNetADSGoogle Scholar
  200. Smolin, L. (1992), ‘Recent c gvelopments in nonperturbative quantum gravity’. Syracuse University Preprint.Google Scholar
  201. Squires, E. (1991), ‘The dynamical role of time in quantum cosmology’, Phys. Lett. A155, 357–360.MathSciNetADSGoogle Scholar
  202. Stachel, J. (1989), Einstein’s search for general covariance, 1912–1915, in D. Howard & J. Stachel, eds, ‘Einstein and the History of General Relativity: Vol I, Birkhäuser, Boston, pp. 63–100.Google Scholar
  203. Stone, C. Si Kuchar, K. (1992), ‘Representation of spacetime diffeomorphisms in canonical geometrodynamics under harmonic coordinate conditions’, Class. Quan. Gray. 9, 757–776.MathSciNetADSCrossRefzbMATHGoogle Scholar
  204. Suen, W. (1989a), ‘Minkowski spacetime is unstable in semi-classical gravity’, Phys. Rev. Lett. 62, 2217–2226.ADSCrossRefGoogle Scholar
  205. Suen, W. (1989b), ‘Stability of the semiclassical Einstein equation’, Phys. Rev. D40, 315–326.MathSciNetADSGoogle Scholar
  206. Tate, R. (1992), ‘An algebraic approach to the quantization of constrained systems: Finite dimensional examples’. PhD. Dissertation.Google Scholar
  207. Teitelboim, C. (1982), ‘Quantum mechanics of the gravitational field’, Phys. Rev. D25, 3159–3179.MathSciNetADSGoogle Scholar
  208. Teitelboim, C. (1983a), ‘Causality versus gauge invariance in quantum gravity and supergravity’, Phys. Rev. Lett. 50, 705–708.MathSciNetADSCrossRefGoogle Scholar
  209. Teitelboim, C. (1983b), ‘Proper time gauge in the quantum theory of gravitation’, Phys. Rev. D28, 297–309.MathSciNetADSGoogle Scholar
  210. Teitelboim, C. (1983c), ‘Quantum mechanics of the gravitational field’, Phys. Rev. D25, 3159–3179.MathSciNetADSGoogle Scholar
  211. Teitelboim, C. (1983d), ‘Quantum mechanics of the gravitational field in asymptotically flat space’, Phys. Rev. D28, 310–316.MathSciNetADSGoogle Scholar
  212. Teitelboim, C. (1992), in‘Proceedings of NATO Advanced Study Institute ‘Recent Problems in Mathematical Physics, Salamanca, Spain, 1992“, Kluwer, The Netherlands.Google Scholar
  213. Torre, C. (1989), ‘Hamiltonian formulation of induced gravity in two dimensions’, Phys. Rev. D40, 2588–2597.MathSciNetADSGoogle Scholar
  214. Torre, C. (1991), ‘A complete set of observables for cylindrically symmetric gravitational fields’, Class. Quan. Gray. 8, 1895–1911.MathSciNetADSCrossRefGoogle Scholar
  215. Torre, C. (1992), ‘Is general relativity an “already parametrised” theory?’.Google Scholar
  216. Unruh, W. (1988), Time and quantum gravity, in M. Markov, V. Bérezin Si V. Frolov, eds, ‘Proceedings of the Fourth Seminar on Quantum Gravity’, World Scientific, Singapore, pp. 252–268.Google Scholar
  217. Unruh, W. (1989), ‘Unimodular theory of canonical quantum gravity’, Phys. Rev. D40, 1048–1052.MathSciNetADSGoogle Scholar
  218. Unruh, W. (1991), Loss of quantum coherence for a damped oscillator, in A. Ashtekar Si J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 67–74.Google Scholar
  219. Unruh, W. & Wald, R. (1989), ‘Time and the interpretation of quantum gravity’, Phys. Rev. D40, 2598–2614.MathSciNetADSGoogle Scholar
  220. Unruh, W. & Zurek, W. (1989), ‘Reduction of the wave-packet in quantum Brownian motion’, Phys. Rev. D40, 1071–1094.MathSciNetADSGoogle Scholar
  221. Valentini, A. (1992), ‘Non-local hidden-variables and quantum gravity’. SISSA preprint 105/92/A.Google Scholar
  222. Van Hove, L. (1951), ‘On the problem of the relations between the unitary transformations of quantum mechanics and the canonical transformations of classical mechanics’, Acad. Roy. Belg. 37, 610–620.zbMATHGoogle Scholar
  223. Vilenkin, A. (1988), ‘Quantum cosmology and the initial state of the universe’, Phys. Rev. D39, 888–897.MathSciNetADSGoogle Scholar
  224. Vilenkin, A. (1989), ‘Interpretation of the wave function of the universe’, Phys. Rev. D39, 1116–1122.ADSGoogle Scholar
  225. Vink, J. (1992), ‘Quantum potential interpretation of the wavefunction of the universe’, Nucl. Phys. B369, 707–728.MathSciNetADSCrossRefGoogle Scholar
  226. Wheeler, J. (1962), Neutrinos, gravitation and geometry, in‘Topics of Modern Physics. Vol 1’, Academic Press, New York, pp. 1–130.Google Scholar
  227. Wheeler, J. (1964), Geometrodynamics and the issue of the final state, inC. DeWitt & B. DeWitt, eds, ‘Relativity, Groups and Topology’, Gordon and Breach, New York and London, pp. 316–520.Google Scholar
  228. Wheeler, J. (1968), Superspace and the nature of quantum geometrodynamics, in C. DeWitt Si J. Wheeler, eds, ‘Batelle Rencontres: 1967 Lectures in Mathematics and Physics’, Benjamin, New York, pp. 242–307.Google Scholar
  229. Wooters, W. (1984), ‘Time replaced by quantum corrections’, Int. J. Theor. Phys. 23, 701–711.CrossRefGoogle Scholar
  230. York, J. (1972a), ‘Mapping onto solutions of the gravitational initial value problem’, J. Math. Phys. 13, 125–130.MathSciNetADSCrossRefGoogle Scholar
  231. York, J. (1972b), ‘Role of conformal three-geometry in the dynamics of gravitation’, Phys. Rev. Lett.28, 1082–1085.ADSCrossRefGoogle Scholar
  232. York, J. (1979), Kinematics and dynamics of general relativity, inL. Smarr, ed., ‘Sources of Gravitational Radiation’, Cambridge University Press, Cambridge, pp. 83–126.Google Scholar
  233. Zeh, H. (1986), ‘Emergence of classical time from a universal wave function’, Phys. Lett.A116, 9–12.MathSciNetADSGoogle Scholar
  234. Zeh, H. (1988), ‘Time in quantum gravity’, Phys. Lett. Al26, 311–317.ADSGoogle Scholar
  235. Zurek, W. (1981), ‘Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?’, Phys. Rev.D24, 1516–1525.MathSciNetADSGoogle Scholar
  236. Zurek, W. (1982), ‘Environment-induced superselection rules’, Phys. Rev. D26, 1862–1880.MathSciNetADSGoogle Scholar
  237. Zurek, W. (1983), Information transer in quantum measurements:Irreversibility and amplification, in P. Meystre Si M. Scully, eds, ‘Quantum Optics, Experimental Gravity, and Measurement Theory’, Plenum, New York, pp. 87–116.CrossRefGoogle Scholar
  238. Zurek, W. (1986), Reduction of the wave-packet: How long does it take?, in G. Moore Si M. Scully, eds, ‘Frontiers of Nonequilibrium Statistical Physics’, Plenum, New York, pp. 145–149.CrossRefGoogle Scholar
  239. Zurek, W. (1991), Quantum measurements and the environment-induced transition from quantum to classical, in A. Ashtekar &J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 43–66.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • C. J. Isham
    • 1
  1. 1.Blackett LaboratoryImperial CollegeSouth Kensington, LondonUK

Personalised recommendations