Skip to main content

Motor Slowness in Parkinson’s Disease

  • Chapter

Part of the book series: NATO ASI Series ((ASID,volume 75))

Abstract

Patients with Parkinson’s disease are slow in initiating and executing even simple movements. It has been suggested that the slowness of movement initiation in Parkinson’s disease may reflect deficits in motor programming. To test this hypothesis a number of studies have compared the performance of patients with Parkinson’s disease and normal controls on simple (SRT) and choice reaction time (CRT) tasks. The results of these studies are inconsistent. The relationship between SRT and CRT in patients relative to controls fits four possible statistical patterns: no deficit, general slowing, selective slowing of SRT, and selective slowing of CRT. Variations in sample characteristics and procedural differences between studies could partly account for the discrepant pattern of results. The results of two studies are reported which were conducted to assess the effect of a number of procedural variables on SRT and CRT in Parkinson’s disease. The results of the RT studies allow a number of conclusions. However, the processes underlying motor slowness in Parkinson’s disease have not been fully explained by RT paradigms. Another approach, however, is to ask what the anatomical substrates of this motor slowness are. In Parkinson’s disease there is a loss of dopaminergic neurons in the basal ganglia, especially the putamen. The supplementary motor area (SMA) is the major cortical output region for the putamen. Therefore, the slowness in motor programming and response initiation observed in our studies is consistent with another hypothesis proposing that the motor deficits of Parkinson’s disease may result from the functional deafferentation of the putamen from the SMA. Evidence from clinical descriptions of symptomatology, comparative behavioural studies of simple and complex movements, electrophysiological investigations of motor preparation, and recent PET activation studies will be reviewed which provide some support for this hypothesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amabile G. Fattapposta F. Pozzessere G. Albani G. Sanarelli L. Rizzo PA. and Morocutti C. (1986) Parkinson’s disease: Electrophysiological (CNV) analysis related to pharmacological treatment. EEG & Clinical Neurophysiology, 64, 521–524.

    Article  Google Scholar 

  • Alexander GE. DeLong MR. Strick PL. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 9, 337–381.

    Article  Google Scholar 

  • Barrett G. Shibasaki H. and Neshige R. (1986) Cortical potential shifts preceding voluntary movement are normal in parkinsonism. Electroencephalography and clinical Neurophysiology, 63, 340–348.

    Article  Google Scholar 

  • Beck AT. Ward CH. Mendelson M. Mock JE, Erbaugh JK (1961) An inventory for measuring depression. Archives of General Psychiatry, 4, 561–571.

    Article  Google Scholar 

  • Benecke R et al (1985) Increase of the bereitschaftspotential in simultaneous and sequential movements. Neuroscience Letters, 62, 347–352.

    Article  Google Scholar 

  • Benecke R et al (1986) Performance of simultaenous movements in patients with Parkinson’s disease. Brain, 109, 739–757.

    Article  Google Scholar 

  • Benecke R et al (1987) Disturbance of sequential movements in patients with Parkinson’s disease.Brain, 110, 361–379.

    Article  Google Scholar 

  • Bloxham CA. Mindell TA. and Frith CD (1984) Initiation and execution of predictable and unpredictable movements in Parkinson’s disease. Brain, 107, 371–384.

    Article  Google Scholar 

  • Bloxham CA. Dick DJ. and Moore M. (1987) Reaction times and attention in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 50, 1178–1183.

    Article  Google Scholar 

  • Brinkman C (1984) Supplemetary motor area of the monkey’s cerebral cortex: short and long-term deficits after unilateral ablation and the effects of subsequent callosal section. J. Neurosci., 4, 918–929.

    Google Scholar 

  • Brown RG. Jahanshahi M. and Marsden CD. (1992) Response choice in Parkinson’s disease: The effects of uncertainty and S-R compatibility. In Press, Brain

    Google Scholar 

  • Bruhn P. and Parsons OA. (1977) Reaction time variability in epileptic and brain-damaged patients. Cortex, 13, 373–384.

    Google Scholar 

  • Chan JL & Ross ED (1988) Left-handed mirror writing following right anterior cerebral artery infarction. Neurology, 38, 59–63.

    Article  Google Scholar 

  • Deecke L. Lang W. Heller HJ. Hufnagl M. Kornhuber HH. (1987) Bereitschaftspotential in patients with unilateral lesions of the supplementary motor area. Journal of Neurology, Neurosurgery & Psychiatry, 50, 1430–1434.

    Article  Google Scholar 

  • Dick JPR.Benecke R. Rothwell JC. Day BL. and Marsden CD. (1986) Simple and complex movements in a patient with infarction of the right supplementary motor area. Movement Disorders, 1, 225–266.

    Article  Google Scholar 

  • Dick JPR. Cantello R. Buruma O. Gioux M. Benecke R. Day BL. Rothwell JC. Thompson PD. and Marsden CD. (1987) The Bereitshaftspotential, L-DOPA and Parkinson’s disease. EEG and Clinical Neurophysiology, 66, 233–244.

    Article  Google Scholar 

  • Dick JPR. Rothwell JC. Day BL. Cantello R. Buruma O. Gioux M. Benecke R. Beradelli A. Thompson PD. and Marsden CD. (1989) The Bereitshaftspotential is abnormal in Parkinson’s disease. Brain, 112, 233–244.

    Article  Google Scholar 

  • Eccles JC. (1982) The initiation of voluntary movements by the supplementary motor area. Arch Psychiatr Nervenkr, 231, 423–441.

    Article  Google Scholar 

  • Evarts EV. Teravainen H. and Calne DB. (1981) Reaction time in Parkinson’s disease. Brain, 104, 167–186.

    Article  Google Scholar 

  • Evarts EV. and Wise SP. (1984) Basal ganglia outputs and motor control. In Evered D and O’Connor M (Eds) Functions of the Basal Ganglia. CIBA Foundation Symposium. 107, 83–96.

    Google Scholar 

  • Fitts PM. and Deininger RL. (1954) S-R compatibility: corresponence among paired elements within stimulus and response codes. Journal of Experimental Psychology, 48, 483–492.

    Article  Google Scholar 

  • Fitts PM. and Seeger CM. (1953) S-R compatibility: spatial characteristics of stimulus and response codes. Journal of Experikmental Psychology, 46, 199–210.

    Article  Google Scholar 

  • Folstein MF. Folstein SE. McHugh PR. (1975) ’Mini-Mental-State’: A practical method for grading the clinical state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.

    Article  Google Scholar 

  • Gaillard AWK. (1980) Cortical correlates of motor preparation. In Nickerson RS. (Ed) Attention and Performance, Volume 8. Erlbaum: Hillsdale, New Jersey.

    Google Scholar 

  • Garnett ES. Nahmias C. and Firnau G. (1984) Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography. Canadian Journal of Neurological Sciences, 11, 174–179.

    Google Scholar 

  • Girotti F. Carella F. Grassi MP. Soliveri P. Marano R. and Caraceni T. (1986) Motor and cognitive performances of Parkinsonian patients in the on and off phases of the disease. Journal of Neurology, Neurosurgery and Psychiatry, 49, 657–660.

    Article  Google Scholar 

  • Goldberg G. (1985) Supplementary motor area structure and function: review and hypotheses. Behavioral & Brain Sciences, 8, 567–615.

    Article  Google Scholar 

  • Goodrich S. Henderson L. and Kennard C. (1989) On the existence of an attention-demanding proocess peculiar to simple reaction time: Converging evidence from Parkinson’s disease. Cognitive Neuropsychology, 6, 309–331.

    Article  Google Scholar 

  • Gordon B. and Carson K. (1990) The basis for choice reaction time slowing in Alzheimer’s disease. Brain & Cognition, 13, 148–166.

    Article  Google Scholar 

  • Hasbroucq T. Guiard Y and Ottomani IL. (1990) Principles of response determination: the list-rule model of SR compatibility. Bulletin of the Psychonomoc Society, 28, 327–330.

    Google Scholar 

  • Heilman KM. Bowers D. Watson RT. and Greer M (1976) Reaction time in Parkinson’s disease. Arch. Neurol., 33, 139–140.

    Article  Google Scholar 

  • Henry FM. and Rogers DE. (1960) Increased response latency for complicated movements and a ’memory drum’ theory of neuromotor reaction. Research Quarterly, 31, 448–458.

    Google Scholar 

  • Hick WE. (1952) On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4, 11–26.

    Article  Google Scholar 

  • Hietanen M. and Teravainen H. (1986) Cognitive performance in early Parkinson’s disease. Acta Neurologia Scandanavia, 73, 151–159.

    Article  Google Scholar 

  • Hoehn MM. and Yahr MD (1967) Parkinsonism: onset, progression, and mortality. Neurology, 17, 427–442.

    Article  Google Scholar 

  • Hyman R. (1953) Stimulus infromation as a determinant of reaction time. Journal of Experimental Psychology, 45, 188–196.

    Article  Google Scholar 

  • Jahanshahi M. Brown RG. and Marsden CD (1992) Simple and choice reaction time and the use of advance information for motor preparation in Parkinson’s disease. Brain, 115, 539–564.

    Article  Google Scholar 

  • Jenkins HI. Fernandez W. Playford ED. Lees AJ. Frackowiak RSJ. Passingham RE. and Brooks DJ. (1992) Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Annals of Neurology In Press.

    Google Scholar 

  • Jones DL. Phillips JG. Bradshaw JL. Iansek R. and Bradshaw JA. (1992) Impairment in bilateral alternating movements in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 55, 503–506.

    Article  Google Scholar 

  • King HE. (1954) Psychomotor aspects of mental disease. Harvard University Press: Cambridge.

    Google Scholar 

  • Klapp ST. (1976) Short-term memory as a response preparation state. Memory & Cognition, 4, 721–729.

    Article  Google Scholar 

  • Klapp ST. (1977) Reaction time analysis of programmed control. Exerc Sport Sci, 5, 231– 253.

    Google Scholar 

  • Kornhuber HH. and Deecke L. (1965) Hirnpotentialanderungen bei Wilkburbewegugen und passiven Bewegugungen den Menschen: Beritschaftspotential und reafferente Potentiale. Pfligers Archiv., 284, 1–17.

    Article  Google Scholar 

  • Laplane DJ. Talairach V. Meininger V. Bancaud J. Orgogozo JM (1977) Clinical consequences of cortectomies involving the supplementary motor area in man. J. Neurol Sci, 34, 301–14.

    Article  Google Scholar 

  • Lashley KS. (1917) The accuracy of movement in the absence of excitation from the moving organ. American Journal of Physiology, 43, 169–194.

    Google Scholar 

  • Lazarus J-AC. and Stelmach GE. (1992) Interlimb coordination in Parkinson’s disease. Movement Disorders, 7, 159–170.

    Article  Google Scholar 

  • Lichter DG. Corbett AJ. Fitzgibbon GM. Davidson OR. Hope A Goddard GV. Sharpies KJ. and Pollock M. (1988) Cognitive and motor dysfunction in Parkinson’s disease. Clinical, performance, and computed tomographic correlations. Archives of Neurology, 45, 854– 860.

    Article  Google Scholar 

  • Lindvall O. Rehncrona S. Brundin P. Gustavii B. et al (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease.Arch Neurol 46, 615–631.

    Article  Google Scholar 

  • Marsden CD. (1982) The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology, 32, 514–539.

    Article  Google Scholar 

  • Mayeux R. Stern Y. Sano M. Cote L. and Williams JBW. (1987) Clinical and biochemical correlates of bradyphrenia in Parkinson’s disease. Neurology, 37, 1130–1134.

    Article  Google Scholar 

  • Miller E. (1976) Simple and choice reaction time following severe head injury. Cortex, 6, 121–127.

    Google Scholar 

  • Montgomery EB. and Nuessen J. (1990) The movement speed/accuracy operator in Parkinson’s disease. Neurology, 40, 269–272.

    Article  Google Scholar 

  • Nakamura R. and Taniguchi R. (1980) Dependence of reaction times on movement patterns in patients with Parkinson’s disease and those with cerebellar degeneration. Tohoku Journal of Experimental Medicine, 132, 153–158.

    Article  Google Scholar 

  • Penfield W. and Welch K. (1949) The supplementary motor area in the cerebral cortex of man. Trans Am Neurol Assoc, 74, 179–184.

    Google Scholar 

  • Playford ED. Jenkins IH. and Passingham RE. Nutt J. Frackowiak RSJ. Brooks DK. (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: A PET study. Annals of Neurology, In Press.

    Google Scholar 

  • Pullman SL. Watts RL. Juncos JL. Chase TN. and Sanes JN. (1988) Dopaminergic effects on simple and choice reaction time performance in Parkinson’s disease. Neurology, 38, 249– 254.

    Article  Google Scholar 

  • Pullman SL. Watts RL. Juncos JL. and Sanes JN. (1990) Movement amplitude choice reaction time performance in Parkinson’s disease may be independent of dopaminergic status. Journal of Neurology, Neurosurgey & Psychiatry, 53, 279–283.

    Article  Google Scholar 

  • Rafal RD. Posner MI. Walker JA. and Friedrich FJ. (1984) Cognition and the basal ganglia. Separating mental and motor components of performance in Parkinson’s disease. Brain,107, 1083–1094.

    Article  Google Scholar 

  • Reid WGJ. Broe GA. Hely A. Morris JGL. Williamson PM. O’Sullivan DJ. Rail D. Genge S. and Moss NG. (1989) The neuropsychology of de novo patients with idiopathic Parkinson’s disease: the effects of age of onset. International Journal of Neuroscience, 48, 205–217.

    Article  Google Scholar 

  • Rohrbaugh JW. and Gaillard AWK. (1983) Sensory and motor aspects of the contingent negative variation. In Gaillard AWK and Ritter W. (Eds) Tutorials in ERP research: endogenous components. North-Holland: Amsterdam, pp 264–310.

    Google Scholar 

  • Roland PE. Larsen B Lassen NA. and Skinhoj E. (1980) Supplementary motor area and other cortical areas in organization of voluntary movements in man. Journal of Neurophysiology, 43, 118–136.

    Google Scholar 

  • Roland PE. Meyer E. Shibasaki T. Yamamoto YL. and Thompson CJ. (1980) Regional cerebral blood flow in cortex and basal ganglia during voluntary movements in normal human volunteers. Journal of Neurophysiology, 43, 467–480.

    Google Scholar 

  • Rosenbaum DA. (1980) Human movement initiation: specification of arm, direction, and extent. Journal of Experimental Psychology: Gemeral, 109, 444–474.

    Article  Google Scholar 

  • Rothwell JC. Traub MM Day BL, Obeso JA Thomas PK. and Marsden CD (1982) Manual motor prerformance in a deafferented man. Brain, 105, 515–542.

    Article  Google Scholar 

  • Schell G et al (1986) Transient neurological deficit after therapeutic embolization of the arteries supplying the medial wall of the hemisphere including the supplementary motor area. Neurosurgery, 18, 353–356.

    Article  Google Scholar 

  • Seitz RJ. Roland PE. Bohm C. Greitz T. and Stone-Elander S. (1990) Motor learning in man: a positron emission tomographic study. NeuroReport, 1, 17–20.

    Article  Google Scholar 

  • Sheridan MR. Flowers KA. and Hurrell J. (1987) Programming and execution of movement in Parkinson’s disease. Brain, 110, 1247–1271.

    Article  Google Scholar 

  • Starkstein S. Esteguy M. Berthier ML. Garcia H. and Leiguarda R. (1989) Evoked potentials, reaction time and cognitive performance in on and off phases of Parkinson’s disease. J Neurol Neurosurg Psychiatry,52, 338–340.

    Article  Google Scholar 

  • Stelmach GE. Worringham CJ. and Strand EA. (1986) Movement preparation in Parkinson’s disease. The use of advance information. Brain, 109, 1179–1194.

    Article  Google Scholar 

  • Stelmach GE. and Worringham CJ. (1988) The control of bimanual aiming movements in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 51, 223–231.

    Article  Google Scholar 

  • Sternberg S. Monsell S. Knoll RL. and Wright CE. (1978) The latency and duration of rapid movement sequences: comparison of speech and handwriting. In GE Stelmach (Ed.) Information processing in motor control and learning. Academic Press: New York. pp 117–152.

    Google Scholar 

  • Talland GA. (1963) Manual skills in Parkinson’s disease. Geriatrics, 18, 613–620.

    Google Scholar 

  • Tanji J. Taniguichi K. and Saga T. (1980) Supplementary motor area: neuronal response to motor instructions. Journal of Neurophysiology, 43, 60–68.

    Google Scholar 

  • Teasdale N. and Stelmach GE. (1988) Movement disorders: The importance of the movement context. Journal of Motor Behavior 20, 186–191.

    Google Scholar 

  • Teravainen H. and Calne D. (1980) Quantitative assessment of Parkinsonian deficits. In: Parkinson’s Disease-Current Progress, problems and Management. Edited by U.K. Rinne, M. Klinger, G. Stamm. North Holland Biomedical Press: Elsevier. pp145–164.

    Google Scholar 

  • Vaamonde J. Obeso JA. Artieda J. Oliver A. Rossi and Barraquer-Bordas L. (1991) The role of the supplementary motor area (SMA) in the pathophysiology of Parkinson’s disease (PD). Poster presented at the Tenth International Symposium on Parkinson’s disease. Tokyo, Japan, October 1991.

    Google Scholar 

  • Velasco F and Velasco M. (1973) A quantitative evaluation of the effects of L-dopa on Parkinson’s disease. Neuropharmacology, 12, 80–99.

    Article  Google Scholar 

  • Viallet F. Masson R. and Khalil R. (1987a) Performance of a bimanual load-lifting task by Parkinsonian patient. Journal of Neurology, Neurosurgery and Psychiatry, 50, 1274–1283.132.

    Article  Google Scholar 

  • Viallet F. Trouche E. Beaubaton D. Legallet E. Khalil R. (1987b) Visual feedback and motor performance in human and animal basal ganglia dysfunction. In: Basal Ganglia and Behavior. Edited by J.S. Shneider, T.I. Libby. Toronto: Huber, pp 71–82.

    Google Scholar 

  • Webster DD (1968) Critical analysis of the disability in Parkinson’s disease. Modern Treatment, 5, 257–282.

    Google Scholar 

  • Wiesendanger M. Schneider P. and Villoz JP. (1969) Electromyographic analysis of a rapid volitional movement. American Journal of Physical Medicine, 48, 17–24.

    Google Scholar 

  • Worringham CJ. and Stelmach GE. (1990) Practice effects on the preprogramming of discrete movements in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 53,702–704.

    Article  Google Scholar 

  • Yanagisawa N. Fujimoto S. and Tanaka R. (1983) Visuomotor control of leg tracking in patients with Parkinson’s disease or chorea. In Desmedt JE (Ed) Motor control mechanisms in health and disease. Raven Press: New York, pp 883–888.

    Google Scholar 

  • Yangagisawa N. Fujimot S. and Tamaru F. (1989) Bradykinesia in Parkinson’s disease: Disorders of onset and execution of fast movement. European Neurology, 29 (supplement 1), 19–28.

    Article  Google Scholar 

  • Yokochi F. Nakamura R. and Narabayashi H. (1985) Reaction time of patients with Parkinson’s disease with reference to assymetry of neurological signs. Journal of Neuorlogy, Neurosurgery & Psychiatry, 48, 702–705.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jahanshahi, M., Brown, R.G., Marsden, C.D. (1993). Motor Slowness in Parkinson’s Disease. In: Stelmach, G.E., Hömberg, V. (eds) Sensorimotor Impairment in the Elderly. NATO ASI Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1976-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1976-4_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4872-9

  • Online ISBN: 978-94-011-1976-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics