Skip to main content

Recent Advances in Gas Electron Diffraction and Structural Studies by Join Quantum Mechanical and Experimental Procedures

  • Chapter
Recent Experimental and Computational Advances in Molecular Spectroscopy

Part of the book series: NATO ASI Series ((ASIC,volume 406))

  • 163 Accesses

Abstract

Gas electron diffraction (GED) is a powerful tool of structural chemistry. This field is currently undergoing important change because of the recent development of multichannel real-time data acquisition procedures which are more versatile than the conventional photographic detection methods. Direct detection enables studies of transient species and time-resolved investigations using pulsed electron beams. It is a characteristic of GED that closely spaced bond distances and angles are not resolved by the data due to molecular disorder in gases. Therefore, ab initio geometries are useful in GED studies, because calculated differences between bond distances and angles can be used to constrain least squares GED data analyses. This area of structural chemistry, involving interactive quantum mechanical and experimental studies, is currently also undergoing an important development, because the accuracy of the calculated constraints can be tested in a novel way by MP2- gradient optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hargittai, I. and Hargittai, M. (eds.) (1988) ‘Stereochemical Applications of gas phase electron diffraction’ vols. A and B, VCH.

    Google Scholar 

  2. Schäfer, L. (1976) ‘Electron diffraction as a tool of structural chemistry’, Appl. Spectrosc. 30, 123–149.

    Article  Google Scholar 

  3. Ewbank, J. D., Schäfer, L., Paul, D. W., Benston, O. J., and Lennox, J. C. (1984) ‘Real- time data acquisition for gas electron diffraction’, Rev. Sei. Instrum. 55, 1598–1603.

    Article  CAS  Google Scholar 

  4. Ewbank, J. D., Schäfer, L., Paul, D. W., Monts, D. L., and Faust, W. L. (1986) ‘Improvements in real-time data acquisition for gas electron diffraction’, Rev. Sei. Instrum. 57, 967–972.

    Article  CAS  Google Scholar 

  5. Ewbank, J. D., Paul, D. W., Schäfer, L., and Bakhtiar, R. (1989) ‘Real-time electron diffraction. Part III: Image transfer via fiber optics’, Appl. Spectrosc, 43, 415–419.

    Article  CAS  Google Scholar 

  6. Schäfer, L. and Ewbank, J. D. (1988) ‘Experiments aimed at extending the applicability of gas electron diffraction using real-time procedures’, Acta Chem. Scand., A42, 358- 366.

    Article  Google Scholar 

  7. Ewbank, J. D., Faust, W. L., Luo, J. Y., English, J. T., Monts, D. L., Paul, D. W., Dou, Q., and Schäfer, L. (1992) ‘Instrumentation for gas electron diffraction employing a pulsed electron beam synchronous with photoexcitation’, Rev. Sei. Instrum. 63, 3352- 3358.

    Article  CAS  Google Scholar 

  8. Chiu, N. S., Ewbank, J. D., Askari, M., and Schäfer, L. (1979) ‘Molecular orbital constrained gas electron diffraction studies’, J. Mol. Struct., 54,185–195.

    Article  CAS  Google Scholar 

  9. Chiu, N. S., Sellers, H. L., Schäfer, L., and Kohata, K. (1979) ‘Molecular orbital constrained electron diffraction studies. Conformational behavior of 1,2 dimethylhydrazine’, J. Am. Chem. Soc, 101, 5883–5889. 255

    Article  CAS  Google Scholar 

  10. Hemelrijk, D. Van, Enden, L. Van den, Geise, H. J., Sellers, H. L., and Schäfer, L. (1980) ‘Structure determination of 1-butene by gas electron diffraction, microwave spectroscopy, molecular mechanics and molecular orbital constrained electron diffraction’, J. Am. Chem. Soc, 102,2189–2195.

    Article  Google Scholar 

  11. Klimkowski, V. J., Ewbank, J. D., Alsenoy, C. Van, Scarsdale, J. N., and Schäfer, L. (1982) ‘Molecular orbital constrained electron diffraction studies. 4. Conformational analysis of the methyl ester of glycine’, J. Am. Chem. Soc, 104,1476–1480.

    Article  CAS  Google Scholar 

  12. Schäfer, L., Ewbank, J. D., Siam, K., Chiu, N. S., and Sellers, H. L., (1988) ‘Molecular orbital constrained electron diffraction studies: The concerted use of electron diffraction and quantum chemical calculations’, in Hargittai I. and Hargittai M. (eds.) ‘Stereochemical Applications of gas phase electron diffraction’, VCH, vol. A, 301–320.

    Google Scholar 

  13. Schäfer, L., Siam, K., Ewbank, J. D., Caminati, W., and Fantoni, A. C. (1987) ‘Ab initio studies of structural features not easily amenable to experiment: Some surprising applications of ab initio geometries in microwave spectroscopic conformational analyses’, in Maksic, Z. B. (ed.), ‘Modelling of structure and properties of molecules’, Horwood Ltd., 79–90.

    Google Scholar 

  14. Pulay, P. (1969) ‘Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules’, Mol. Physics, 17, 197–204.

    Article  CAS  Google Scholar 

  15. Pulay, P. (1979) ‘An efficient ab initio gradient program’, Theoret. Chim. Acta, 50, 299- 312.

    Article  CAS  Google Scholar 

  16. Schäfer, L., Alsenoy, C. Van, and Scarsdale, J. N. (1982) ‘Estimates for systematic empirical corrections of consistent 4–21G ab initio geometries’, J. Mol. Struct. 86, 349- 364.

    Google Scholar 

  17. Schäfer, L. (1983) ‘The ab initio gradient revolution in structural chemistry: the importance of local molecular geometries and the efficacy of joint quantum mechanical and experimental procedures’, J. Mol. Struct. 100, 51–73.

    Article  Google Scholar 

  18. Hehre, W. J., Radom, L. Schleyer, P. von R., and Pople, J. A. (1986) ‘Ab initio molecular orbital theory’, Wiley, New York.

    Google Scholar 

  19. Ramek, M., Cheng, V. K. W., Frey, R. F., Newton, S. Q., and Schäfer, L. (1991) ‘The case of glycine continued: some contradictory SCF results’, J. Mol. Struct., 235,1–10.

    Google Scholar 

  20. Frey, R. F., Coffin, J., Newton, S. Q., Ramek, M., Cheng, V. FL W., Momany, F. A., and Schäfer, L. (1992) ‘Importance of correlation-gradient geometry optimization for molecular conformational analyses’, J. Am. Chem. Soc. 114, 5369–5377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schäfer, L., Ewbank, J.D. (1993). Recent Advances in Gas Electron Diffraction and Structural Studies by Join Quantum Mechanical and Experimental Procedures. In: Fausto, R. (eds) Recent Experimental and Computational Advances in Molecular Spectroscopy. NATO ASI Series, vol 406. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1974-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1974-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4871-2

  • Online ISBN: 978-94-011-1974-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics