Advertisement

Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorite

Chapter
Part of the NATO ASI Series book series (ASIC, volume 416)

Abstract

Carbonaceous chondrites comprise a unique subset of meteorites. Two classes of carbonaceous chondrites, the so-called CI1 and CM2 chondrites, are particularly interesting, in part because of their relatively high carbon content and the fact that most of this carbon is present as organic matter. This material is largely macromolecular but also contains a complex mixture of organic compounds that include carboxylic acids, dicarboxylic acids, amino acids, hydroxy acids, sulfonic acids, phosphonic acids, amines, amides, nitrogen heterocycles including purines and a pyrimidine, alcohols, carbonyl compounds, and aliphatic, aromatic, and polar hydrocarbons. The organic-rich CI1 and CM2 chondrites also contain an extensive clay mineralogy and other minerals that are believed to be indicative of an early episode of hydrous activity in the meteorite parent body. Recent stable isotope measurements have shown the organic matter in general, to be substantially enriched in deuterium and the discrete organic compounds to be enriched in 15N and somewhat enriched in 13C relative to terrestrial matter. These findings suggest that the organic matter is comprised of, or is closely related to, interstellar organic compounds. The organic chemistry of these meteorites is consistent with a formation scheme in which (1) a parent body was formed from volatile-rich icy planetesimals containing interstellar organic matter, (2) warming of the parent body led to an extensive aqueous phase in which the interstellar organics underwent various reactions, and (3) residual volatiles were largely lost leaving behind the suite of nonvolatile compounds that now characterize these meteorites.

Keywords

Dicarboxylic Acid Hydroxy Acid Parent Body Solar Nebula Monocarboxylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, A. J., Whittet, D. C. B. and Duley, W. W. (1990) The 3.4-µm interstellar absorption feature in Cyg OB2 no. 12*. Mon. Not. R. astr. Soc. 243, 400–404.Google Scholar
  2. Agarwal, V.K., Schutte, W., Greenberg, J.M., Ferris, J.P., Briggs, R., Connor, S., Van de Bult, C.P.E.M. and Baas, F. (1985) Photochemical reactions in interstellar grains. Photolysis of CO, NH3 and H2O. Origins of Life, 16, 21–40.PubMedCrossRefGoogle Scholar
  3. Allamandola, L.J., Tielens, A. G. G. M. and Barker, J. R. (1985) Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands: Auto exhaust along the Milky Way? Astrophys. J. 290, L25–L28.CrossRefGoogle Scholar
  4. Allamandola, L.J., Sandford, S.A. and Wopenka, B. (1987) Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites, Science 237, 56–59.PubMedCrossRefGoogle Scholar
  5. Allamandola, L.J., Sandford, S.A. and Valero, G.J. (1988) Photochemical and thermal evolution of interstellar/precometary ice analogs, Icarus, 16, 225–252.CrossRefGoogle Scholar
  6. Alpern, B. and Benkheiri, Y. (1973) Distribution de la matiére organique dans la météorite d’Orgueil par microscopie en fluorescence. Earth Planet. Sci. Lett. 19, 422–428.CrossRefGoogle Scholar
  7. Amari, S., Anders, E., Virag, A. and Zinner, E. (1990) Interstellar graphite in meteorites. Nature 345, 238–240.CrossRefGoogle Scholar
  8. Anders, E. (1975) Do stony meteorites come from comets? Icarus 24, 363–371.CrossRefGoogle Scholar
  9. Anders, E. (1978) Most stony meteorites come from the asteroid belt, in D. Morrison and W. C. Wells (eds.) Asteroids: An Exploration Assessment, NASA CP-2053, U.S. Govt. Printing Office, Washington, D.C., pp. 57–75.Google Scholar
  10. Anders, E. (1989) Pre-biotic organic matter from comets and asteroids. Nature 342, 255–256.PubMedCrossRefGoogle Scholar
  11. Bada, J. L., Cronin, J. R., Ho, M.-S., Kvenvolden, K. A., Lawless, J. G., Miller, S. L., Oró, J. and Steinberg, S. (1983) On the reported optical activity of amino acids in the Murchison meteorite, Nature 301, 494–497.CrossRefGoogle Scholar
  12. Basile, B. P., Middleditch, B. S. and Oró, J. (1984) Polycyclic aromatic hydrocarbons in the Murchison meteorite. Org. Geochem. 5, 211–216.CrossRefGoogle Scholar
  13. Becker, R. H. and Epstein, S. (1982) Carbon, hydrogen and nitrogen isotopes in solventextractable organic matter from carbonaceous chondrites. Geochim. Cosmochim. Acta 46, 97–103.CrossRefGoogle Scholar
  14. Beiging, J. H. (1990) Carbon chemistry of circumstellar envelopes, in J. C. Tarter,S. Chang, and D. J. DeFrees (eds.), Carbon in the Galaxy: studies from Earth and Space,NASA Conf. Publ. 3081, pp. 147–158.Google Scholar
  15. Belsky, T. and Kaplan, I. R. (1970) Light hydrocarbon gases, 13C, and origin of organic matter in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 257–278.CrossRefGoogle Scholar
  16. Bergmann, M. and Stern, F. (1930) Notiz über acetylierung von amino-säuren mittels ketens. Ber 63B, 437–439.Google Scholar
  17. Blake, D.F., Freund, F., Krishnan, K.F.M., Echer, C.J., Shipp, R., Bunch, T.E., Tielens, A.G., Lipari, R.J., Hetherington, C. J.D. and Chang, S. (1988) The nature and origin of interstellar diamond, Nature, 332, 611–613.PubMedCrossRefGoogle Scholar
  18. Briggs, R., Erten, G., Ferris, J.P., Greenberg, J.M., McCain, P.J., Mendoza-Gomez, C.X. and Schutte, W. (1992) Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Origins of Life, 22, 287–307.PubMedCrossRefGoogle Scholar
  19. Buhl, P. (1975) An Investigation of organic compounds in the Mighei meteorite. Ph.D. Thesis, Univ. of Maryland, College Park.Google Scholar
  20. Bunch, T. E. and Chang, S. (1980) Carbonaceous chondrites: II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmoshim. Acta 44, 1543–1577.CrossRefGoogle Scholar
  21. Butchard, I., McFadzean, A. D., Whittet, D. C. B., Geballe, T. R. and Greenberg, J. M. (1986) Three micron spectroscopy of the galactic center source IRS 7. Astron. Astrophys. Lett. 154, L5–L7.Google Scholar
  22. Cairns-Smith, A. G. (1982) Genetic takeover and the mineral origins of life, Cambridge Univ. Press, Cambridge.Google Scholar
  23. Cameron, A. G. W. (1973) Interstellar grains in museums? in J. M. Greenberg and H. C. Van de Hulst (eds.), Interstellar dust and related topics, D. Reidel Publishing Co., Dordrecht, pp. 545–547.CrossRefGoogle Scholar
  24. Chang, S., Mack, R. and Lennon, K. (1978) Carbon chemistry of separated phases of Murchison and Allende meteorites. Lunar Planet. Sci. IX, 157–158.Google Scholar
  25. Chang, S., Des Marais, D., Mack, R., Miller, S.L. and Strathearn, G.E. (1983) Prebiotic organic synthesis and the origin of life, in Earth’s Earliest Biosphere (J.W. Schopf, ed.), Princeton University Press, pp. 53–92.Google Scholar
  26. Chyba, C. F., Thomas, P. J., Brookshaw, L. and Sagan, C. (1990) Cometary delivery of organic molecules to the early earth. Science, 249, 366–373.PubMedCrossRefGoogle Scholar
  27. Chyba, C. F. and Sagan, C. (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125–132.PubMedCrossRefGoogle Scholar
  28. Clark, B., Mason, L.W., and Kissel, J. (1987) Systematics of the “CHON” and other lightelement particle populations in Comet Halley. Astron. Astrophys. 187, 779–784.Google Scholar
  29. Clayton, R. N. (1978) Isotopic anomalies in the early solar system. Ann. Rev. Nucl. Part. Sci. 28, 501–522.CrossRefGoogle Scholar
  30. Cooper, G. W., Onwo, W. M. and Cronin, J. R. (1992) Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite, Geochim. Cosmochim. Acta 56, 4109–4115.PubMedCrossRefGoogle Scholar
  31. Cronin, J. R. and Moore, C. B. (1971) Amino acid analyses of the Murchison, Murray, and Allende carbonaceous chondrites. Science 172, 1327–1329.PubMedCrossRefGoogle Scholar
  32. Cronin, J. R. (1976) Acid-labile amino acid precursors in the Murchison meteorite. I. Chromatographic fractionation. Origins of Life 7, 337–342.PubMedCrossRefGoogle Scholar
  33. Cronin, J. R., Gandy, W. E. and Pizarello, S. (1981) Amino acids of the Murchison meteorite: I. Six carbon acyclic primary α-amino alkanoic acids. J. Molec. Evol. 17, 265–272.PubMedCrossRefGoogle Scholar
  34. Cronin, J. R. and Pizzarello, S. (1983) Amino acids in meteorites. Adv. Space Res. 3, 3–18.CrossRefGoogle Scholar
  35. Cronin, J. R., Pizarello, S. and Yuen, G. U. (1985) Amino acids of the Murchison meteorite: II. Five carbon acyclic primary ß-, γ-, and δ-amino alkanoic acids. Geochim. Cosmochim. Acta 49, 2259–2265.PubMedCrossRefGoogle Scholar
  36. Cronin, J. R. and Pizzarello, S. (1986) Amino acids of the Murchison meteorite. III. Seven carbon acyclic primary α-amino alkanoic acids. Geochim. Cosmochim. Acta 50, 2419–2427.PubMedCrossRefGoogle Scholar
  37. Cronin, J. R., Pizzarello, S. and Frye, J. S. (1987) 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites. Geochim. Cosmochim. Acta 51, 299–303.PubMedCrossRefGoogle Scholar
  38. Cronin, J. R., Pizzarello, S. and Cruikshank, D. P. (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids, and comets, in J. F. Kerridge and M. S. Matthews (eds.) Meteorites and the Early Solar System, Chap. 10.5, pp. 819–857, Univ. Arizona Press.Google Scholar
  39. Cronin, J. R. and Pizzarello, S. (1990) Aliphatic hydrocarbons of the Murchison meteorite. Geochim. Cosmochim. Acta 54, 2859–2868.PubMedCrossRefGoogle Scholar
  40. Cronin, J. R., Pizzarello, S., Epstein, S. and Krishnamurthy, R. V. (1993) Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta, in press.Google Scholar
  41. Deamer, D. W. (1985) Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317, 792–794.CrossRefGoogle Scholar
  42. Degens, E. T. and Bajor, M. (1962) Amino acids and sugars in the Brudesheim and Murray meteorites. Naturwiss. 49, 605–606.CrossRefGoogle Scholar
  43. Dufresne, E. R. and Anders, E. (1962) On the chemical evolution of the carbonaceous chondrites. Geochim. Cosmochim. Acta 26, 1085–1114.CrossRefGoogle Scholar
  44. Duley, W. W. and Williams, D. A. (1981) The infrared spectrum of interstellar dust: Surface functional groups on carbon. Mon. Not. R. Astron. Soc. 196, 269.Google Scholar
  45. Engel, M. H. and Nagy, B. (1982) Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296, 837–840.CrossRefGoogle Scholar
  46. Engel, M. H., Macko, S. A. and Silfer, J. A. (1990a) Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348, 47–49.PubMedCrossRefGoogle Scholar
  47. Engel, S., Lunine, J.I. and Lewis, J.S. (1990b) Solar nebula origin for volatile gases in Halley’s Comet. Icarus 85, 380–393.CrossRefGoogle Scholar
  48. Epstein, S., Krishnamurthy, R. V., Cronin, J. R., Pizzarello, S. and Yuen, G. U. (1987) Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. Nature 326, 477–479.PubMedCrossRefGoogle Scholar
  49. Ferris, J. P. and Hagen, W. J. (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40, 1093–1120.PubMedCrossRefGoogle Scholar
  50. Ferris, J. P. (1992) Chemical markers of prebioltic chemistry in hydrothermal systems. Origins of Life 22, 109–134.PubMedCrossRefGoogle Scholar
  51. Fomenkova, M., Chang, S. and Mukhin, L. (1992) Classification of carbonaceous components in Comet Halley “CHON” particles. Lunar and Planet Sci. XXIII, 379–380.Google Scholar
  52. Fox, S. W. (1965) A theory of macromolecular and cellular origins. Nature 205, 328–340.PubMedCrossRefGoogle Scholar
  53. Frenklach, M. and Feigelson, E. D. (1989) Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. Astrophys. J. 341, 372–384.CrossRefGoogle Scholar
  54. Fuchs, L. H., Olsen, E. and Jensen, K. J. (1973) Mineralogy, crystal chemistry and composition of the Murchison (C2) meteorite. Smithsonian Contrib. Earth Sci. 10, 1–39.CrossRefGoogle Scholar
  55. Gaffey, M. J., Bell, J. F. and Cruikshank, D. P. (1989) Reflectance spectroscopy and asteroid surface mineralogy. in R. P. Binzel, T. Gehrels, and M. S. Mathews, (eds.), Asteroids II, Univ. Ariz. Press, Tucson, pp. 98–127.Google Scholar
  56. Geiss, J. and Reeves, H. (1981) Deuterium in the early solar system. Astron. Astrophys. 93, 189–199.Google Scholar
  57. Gibson, E. K., Moore, C. B. and Lewis, C. F. (1971) Total nitrogen and carbon abundances in carbonaceous chondrites. Geochim. Cosmochim. Acta 35, 599–604.CrossRefGoogle Scholar
  58. Gilmour, I. and Pillinger, C. (1992) Isotopic differences between PAH isomers in Murchison. Meteoritics 27, 224–225.Google Scholar
  59. Grady, M. M., Wright, I. P., Swart, P. K. and Pillinger, C. T. (1988) The carbon and oxygen isotopic composition of meteoritic carbonates. Geochim. Cosmochim. Acta 52, 2855–2866.CrossRefGoogle Scholar
  60. Greenberg, J. M. (1973) Chemical and physical properties of interstellar dust, in M. A. Gordon and L. E. Snyder (eds.), Molecules in the Galactic Environment, Wiley, N.Y., pp. 94–124.Google Scholar
  61. Greenberg, J.M. (1977) From dust to comets. in A. H. Delsemme (ed.) Comets, Asteroids, and Meteorites, The University of Toledo, pp. 491–497.Google Scholar
  62. Greenberg, J. M. and d’Hendecourt (1985) Evolution of ices from interstellar space to the solar system, in J. Klinger, D. Benest, A. Dollfus and R. Smouluchowski (eds.), Ices in the Solar System, Kluwer, Dordrecht, pp. 185–204.CrossRefGoogle Scholar
  63. Guélin, M., Cernicharo, J., Paubert, G. and Turner, B. E. (1990) Free CP in IRC+ 10216. Astron. Astrophys. 230, L9–L11.Google Scholar
  64. Hahn, J. H., Zenobi, R., Bada, J. L. and Zare, R. N. (1988) Application of two-step laser mass spectrometry to cosmogeochemistry: direct analysis of meteorites. Science 239, 1523–1525.PubMedCrossRefGoogle Scholar
  65. Hamilton, P. B. (1965) Amino acids on hands. Nature 205, 284–285.PubMedCrossRefGoogle Scholar
  66. Han, J., Simoneit, B. R., Burlingame, A. L. and Calvin, M. (1969) Organic analysis on the Pueblito de Allende meteorite. Nature 222, 364–365.CrossRefGoogle Scholar
  67. Hayatsu, R., Studier, M. H., Moore, L. P. and Anders, E. (1975) Purines and triazines in the Murchison meteorite. Geochim. Cosmochim. Acta 39, 471–488.CrossRefGoogle Scholar
  68. Hayatsu, R., Matsuoka, S., Scott, R. G., Studier, M. and Anders, E. (1977) Origin of organic matter in the early solar system-VII. The organic polymer in carbonaceous chondrites. Geochim. Cosmochim. Acta 41, 1325–1339.CrossRefGoogle Scholar
  69. Hayatsu, R., Winans, R. E., Scott, R. G., McBeth, R. L., Moore, L. P. and Studier, M. H. (1980) Phenolic ethers in the organic polymer of the Murchison meteorite. Science 207, 1202–1204.PubMedCrossRefGoogle Scholar
  70. Hayatsu, R and Anders, E. (1981) Organic compounds in meteorites and their origins. Topics Curr. Chem. 99, 1–37.CrossRefGoogle Scholar
  71. Hayatsu, R., Scott, R. G. and Winans, R. E., (1983) Comparative structural study of meteoritic polymer with terrestrial geopolymers coal and kerogen. Meteoritics 18, 310 (abstract).Google Scholar
  72. Hayes, J. M. (1967) Organic constituents of meteorites-A review. Geochim. Cosmochim. Acta 31, 1395–1440.CrossRefGoogle Scholar
  73. Herbst, E. (1985) On the formation and observation of complex interstellar molecules. Origins of Life 16, 3–19.CrossRefGoogle Scholar
  74. Hoefs, J. (1987) Stable Isotope Geochemistry, 3rd ed. Springer-Verlag.Google Scholar
  75. Hollis, J. M., Snyder, L. E., Suenram, R. D. and Lovas, F. J. (1980) Search for the lowestenergy conformer of interstellar glycine. Astrophys. J. 241, 1001–1006.CrossRefGoogle Scholar
  76. Injerd, W. G. and Kaplan, I. R. (1974) Nitrogen isotope distribution in meteorites. Meteoritics 9, 352–353.Google Scholar
  77. van Ijzendoorn, L. J., Allamandola, L. J., Baas, F., Körnig, S. and Greenberg, J. M. (1986) Laser-induced fluorescence and phosphorescence of matrix-isolated glyoxal: evidence for exciplex formation in the A1Au and a AU states. J. Chem. Phys. 85, 1812–1825.CrossRefGoogle Scholar
  78. Joyce, G.F. (1986) RNA evolution and the origins of life. Nature 338, 217–225.CrossRefGoogle Scholar
  79. Joyce, G. F. (1991) The rise and fall of the RNA world. New Biologist 3, 399–407.PubMedGoogle Scholar
  80. Jungclaus, G., Cronin, J. R., Moore, C. B. and Yuen, G. U. (1979) Aliphatic amines in the Murchison meteorite. Nature 261, 126–128.CrossRefGoogle Scholar
  81. Jura, M. (1990) Astronomical observations of solid phase carbon, in J. C. Tarter, S. Chang, and D. J. DeFrees (eds.), Carbon in the Galaxy: studies from Earth and Space, NASA Conf. Publ. 3061, pp. 39–46.Google Scholar
  82. Kerridge, J. F., Mackay, A. L. and Boynton, W. V. (1979) Magnetite in CI carbonaceous meteorites: origin by aqueous activity on a planetesimal surface. Science 205, 395–397.PubMedCrossRefGoogle Scholar
  83. Kerridge, J. F., Chang, S. and Shipp, R. (1987) Isotopic characterization of kerogen-like material in the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 51, 2527–2540.PubMedCrossRefGoogle Scholar
  84. Kerridge, J. F. and Mathews, M. S. (1988) Meteorites and the Early Solar System, Univ. of Arizona Press, Tucson.Google Scholar
  85. Kerridge, J. F. (1991) A note on the prebiotic synthesis of organic acids in carbonaceous meteorites, Origins of Life 21, 19–30.PubMedCrossRefGoogle Scholar
  86. Kimball, B. A. (1988) Determination of formic acid in chondritic meteorites. M. S. Thesis, Arizona State Univ., Tempe.Google Scholar
  87. Klein, H. P. (1992) The Viking biology experiments: epilogue and prologue. Origins of Life 21, 255–261.PubMedCrossRefGoogle Scholar
  88. Kolodny, Y., Kerridge, J. F. and Kaplan, I. R. (1980) Deuterium in carbonaceous chondrites. Earth Planet. Sci. Lett. 46, 149–158.CrossRefGoogle Scholar
  89. Kovalenko, L. J., Maechling, C. R., Clemett, S. J., Philippoz, J.-M. and Zare, R. N. (1992) Microscopic organic analysis using two-step laser mass spectrometery: application to meteoritic acid residues. Anal. Chem. 64, 682–690.CrossRefGoogle Scholar
  90. Krishnamurthy, R. V., Epstein, S., Cronin, J. R., Pizzarello, S. and Yuen, G. U. (1992) Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta 56, 4045–4058.CrossRefGoogle Scholar
  91. Kroto, H. W. (1988) The chemistry of the interstellar medium. Phil. Trans. Roy. Soc. A 325, 405–421.CrossRefGoogle Scholar
  92. Krueger, F. R., Korth, A. and Kissel, J. (1991) The organic matter of comet Halley as inferred by joint gas phase and solid phase analyses. Space Sci. Rev. 56, 167–175.CrossRefGoogle Scholar
  93. Kung, C.C. and Clayton, R.N. (1978) Nitrogen abundances and isotopic composition in stony meteorites. Earth Planet. Sci. Lett. 38, 421–435.CrossRefGoogle Scholar
  94. Kung, C.C, Hayatsu, R., Studier, M.H. and Clayton, R.N. (1979) Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction. Earth Planet. Sci. Lett. 46, 141–146.CrossRefGoogle Scholar
  95. Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C, Kaplan, I. R. and Moore, C. (1970) Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature 228, 923–926.PubMedCrossRefGoogle Scholar
  96. Kvenvolden, K., Lawless, J. G. and Ponnamperuma, C. (1971) Nonprotein amino acids in the Murchison meteorite. Proc. Natl. Acad. Sci. USA 68, 486–490.PubMedCrossRefGoogle Scholar
  97. Lancet, M. S. and Anders, E. (1970) Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170, 980–982.PubMedCrossRefGoogle Scholar
  98. Lawless, J. G. (1973) Amino acids in the Murchison meteorite. Geochim. Cosmochim. Acta 37, 2207–2212.CrossRefGoogle Scholar
  99. Lawless, J. G., Zeitman, B., Pereira, W. E., Summons, R. E. and Duffield, A. M. (1974) Dicarboxylic acids in the Murchison meteorite. Nature 251, 40–41.CrossRefGoogle Scholar
  100. Lawless, J. G. and Yuen, G. U. (1979) Quantification of monocarboxylic acids in Murchison carbonaceous meteorite. Nature 282, 396–398.CrossRefGoogle Scholar
  101. Lerner, N.R., Peterson, E. and Chang, S. (1993) The Strecker synthesis as a source of amino acids in carbonaceous chondrites: deuterium retention during synthesis. Geochim. Cosmochim. Acta, in press.Google Scholar
  102. Lewis, R. S., Tang, M., Wacker, J. F., Anders, E. and Steel, E. (1987) Interstellar diamonds in meteorites. Nature 326, 160–162.CrossRefGoogle Scholar
  103. Lovering, J. F., LeMaitre, R. W. and Chappell, B. W. (1971) Murchison C2 carbonaceous chondrite and its inorganic composition. Nature 230, 18–20.Google Scholar
  104. Lumpkin, G. R. (1986) Electron microscopy of carbonaceous matter in Allende acid residues. Proc. Lunar Planet. Sci. Conf. 12B, 1153–1166.Google Scholar
  105. Lunine, J. I. (1989) The Urey prize lecture: Volatile processes in the outer solar system. Icarus 81, 1–13.CrossRefGoogle Scholar
  106. Maher, K. A. and Stevenson, D. J. (1988) Impact frustration of the origin of life. Nature 331, 612–614.PubMedCrossRefGoogle Scholar
  107. Mason, B. (1963) The carbonaceous chondrites. Space Sci. Rev. 1, 621–646.CrossRefGoogle Scholar
  108. Meinschein, W. G. (1963) Hydrocarbons in terrestrial samples and the Orgueil meteorite. Space Sci. Rev. 2, 653–679.CrossRefGoogle Scholar
  109. Miknis, F. P., Lindner, A. W., Gannon, J., Davis, M. F. and Maciel, G. E. (1984) Solid state 13C NMR studies of selected oil shales from Queensland, Australia. Org. Geochem. 7, 239–248.CrossRefGoogle Scholar
  110. Millar, T. J., Bennett, A. and Herbst, E. (1989) Deuterium fractionation in dense interstellar clouds. Ap. J. 340, 906–920.CrossRefGoogle Scholar
  111. Miller, S. L. (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim. Biophys. Acta 23, 480–489.PubMedCrossRefGoogle Scholar
  112. Miller, S. L. and Van Trump, J. E. (1981) The Strecker synthesis in the primitive ocean. in Y. Wolman (ed.), Origin of Life, D. Reidel Publishing Co., Dordrecht, pp. 135–141.CrossRefGoogle Scholar
  113. Monod, J. (1971) Chance and necessity: an essay on the natural philosophy of modern biology, Knopf, New York.Google Scholar
  114. Morgan, W. A., Jr., Feigelson, E. D., Want, H. and Frenklach, M. (1991) A new mechanism for the formation of meteoritic kerogen-like material. Science 252, 109–112.PubMedCrossRefGoogle Scholar
  115. Mullie, F. and Reisse, J. (1987) Organic matter in carbonaceous chondrites. Topics in Current Chemistry 139, 85–117.CrossRefGoogle Scholar
  116. Olson, R. J., Oró, J. and Zlatkis, A. (1967) Organic compounds in meteorites: II. Aromatic hydrocarbons. Geochim. Cosmochim. Acta 31, 1935–1948.CrossRefGoogle Scholar
  117. Orgel, L. E. (1986) RNA catalysis and the origins of life. J. theor. Biol. 123, 127–149.PubMedCrossRefGoogle Scholar
  118. Oró, J. and Skewes, H. B. (1965) Free amino acids on human fingers: the question of contamination in microanalysis. Nature 207, 1042–1045.PubMedCrossRefGoogle Scholar
  119. Oró, J., Gibert, J., Lichtenstein, H., Wikstrom, S. and Flory, D. A. (1971) Amino acids, aliphatic, and aromatic hydrocarbons in the Murchison meteorite. Nature 230, 105–106.PubMedCrossRefGoogle Scholar
  120. Peltzer, E. T. and Bada, J. L. (1978) α-Hydroxycarboxylic acids in the Murchison meteorite. Nature 272, 443–444.CrossRefGoogle Scholar
  121. Peltzer, E. T., Bada, J. L., Schlesinger, G. and Miller, S. L. (1984) The chemical conditions on the parent body of the Murchison meteorite: Some conclusions based on amino, hydroxy, and dicarboxylic acids. Adv. Space Res. 4, 69–74.PubMedCrossRefGoogle Scholar
  122. Pering, K. L. and Ponnamperuma, C. (1971) Aromatic hydrocarbons in the Murchison meteorite. Science 173, 237–239.PubMedCrossRefGoogle Scholar
  123. Pillinger, C. T. (1984) Light element stable isotopes in meteorites-From grams to picograms. Geochim. Cosmochim. Acta 48, 2739–2766.CrossRefGoogle Scholar
  124. Pizzarello, S., Krishnamurthy, R. V., Epstein, S. and Cronin, J. R. (1991) Isotopic analyses of amino acids from the Murchison meteorite. Geochim. Cosmochim. Acta 55, 905–910.PubMedCrossRefGoogle Scholar
  125. Pollock, G. E., Chang, C.-N., Cronin, S. E. and Kvenvolden, K. E. (1975) Stereoisomers of isovaline in the Murchison meteorite. Geochim. Cosmochim. Acta 39, 1571–1573.CrossRefGoogle Scholar
  126. Prinn, R.G. and Fegley, B., Jr. (1989) Solar nebula chemistry: origin of planetary, satellite, and cometary volatiles. in S.K. Atreya, J.B. Pollack and M.S. Matthews (eds.) Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, pp. 78–136.Google Scholar
  127. Reynolds, J.H., Frick, U., Neil, J.M. and Phinney, D.L. (1978) Rare-gas-rich separates from carbonaceous chondrites. Geochim. Cosmochim. Acta 42, 1775–1797.CrossRefGoogle Scholar
  128. Robert, F. and Epstein, S. (1982) The concentration and isotopic composition of hydrogen, carbon, and nitrogen in carbonaceous meteorites. Geochim. Cosmochim. Acta 46, 81–95.CrossRefGoogle Scholar
  129. Rossignol-Strick, M. and Barghoorn, E. (1971) Extraterrestrial abiogenic organization of organic matter: The hollow spheres of the Orgueil meteorite. Space Life Sci. 3, 89–107.PubMedGoogle Scholar
  130. Saito, S., Kawaguchi, K., Yamamoto, S., Ohishi, M., Suzuki, H. and Kaifu, N. (1987) Laboratory detection and astronomical identification of a new free radical, CCS (3∑-)• Astrophys. J. 317, L115–L119.CrossRefGoogle Scholar
  131. Schidlowski, M. (1988) A 3800-million year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–318.CrossRefGoogle Scholar
  132. Schopf, J. W. and Packer, B. M. (1987) Early archaen (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona group, Australia. Science 237, 70–73.PubMedCrossRefGoogle Scholar
  133. Shimoyama, A., Naroka, H., Komiya, M. and Harada, K. (1989) Analyses of carboxylic acids and hydrocarbons in Antarctic carbonaceous chondrites, Yamato-74662 and Yamato-793321, Geochem. J. 23, 181–193.CrossRefGoogle Scholar
  134. Shock, B. L. and Schulte, M. D. (1990) Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Nature 343, 728–731.PubMedCrossRefGoogle Scholar
  135. Smith, J. W. and Kaplan, I. R. (1970) Endogenous carbon in carbonaceous meteorites. Science 167, 1367–1370.PubMedCrossRefGoogle Scholar
  136. Smith, T. F. and Morowitz, H. J. (1982) Between history and physics. J. Molec. Evol. 18, 265–282.PubMedCrossRefGoogle Scholar
  137. Snyder, L. E. (1986) The search for biomolecules in space, in K. I. Kellerman and G. A. Seielstad (eds.), The Search for Extraterrestrial Intelligence, pp. 39–50.Google Scholar
  138. Stoks, P. G. and Schwartz, A. W. (1979) Uracil in carbonaceous meteorites. Nature 282, 709–710.CrossRefGoogle Scholar
  139. Stoks, P. G. and Schwartz, A. W. (1981a) Nitrogen-heterocyclic componds in meteorites: Significance and mechansim of formation. Geochim. Cosmochim. Acta 45, 563–569.CrossRefGoogle Scholar
  140. Stoks, P. G. and Schwartz, A. W. (1981b) Nitrogen componds in meteorites: A reassessment. in Y. Wolman (ed.), Proc. 6th Internati. Conf. on the Origin of Life, D. Reidel, Dordrecht, pp. 59–64.Google Scholar
  141. Stoks, P. G. and Schwartz, A. W. (1982) Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim. Cosmochim. Acta 46, 309–315.CrossRefGoogle Scholar
  142. Strecker, A. (1850) Über die künstliche bildung der milchsauer und einem neuen dem glycocoll homologen körper. Ann. Chem. 75, 27.CrossRefGoogle Scholar
  143. Studier, M. H., Hayatsu, R. and Anders, E. (1972) Origin of organic matter in the early solar system-V. Further studies of meteoritic hydrocarbons and a discussion of their origin. Geochim. Cosmochim. Acta 36, 189–215.CrossRefGoogle Scholar
  144. Swart, P. K., Grady, M. M., Pillinger, C. T., Lewis, R. S. and Anders, E. Interstellar carbon in meteorites. Science 220, 406–410.Google Scholar
  145. Tang, M., Anders, E., Hoppe, P. and Zinner, E. (1989) Nature 339, 351–354.CrossRefGoogle Scholar
  146. Tielens, A. G. G. M. (1983) Surface chemistry of deuterated molecules. Astron. Astrophys. 119, 177–184.Google Scholar
  147. Tingle, T. N., Becker, C. H. and Malhotra, R. (1991) Organic compounds in the Murchison and Allende carbonaceous chondrites studied by photoionization mass spectrometry. Meteoritics 26, 117–127.Google Scholar
  148. Turner, B. E. (1980) On the identification of MM-wavelength U-lines, in B. H. Andrew (ed.), Interstellar Molecules, D. Reidel, Dordrecht, pp. 45–46.CrossRefGoogle Scholar
  149. Turner, B. E. (1989) Recent progress in astrochemistry. Space Sci. Rev. 51, 235–337.CrossRefGoogle Scholar
  150. Van der Velden, W. and Schwartz, A. W. (1977) Search for purines and pyrimidines in the Murchison meteorite. Geochim. Cosmochim. Acta 41, 961–968.CrossRefGoogle Scholar
  151. Vdovykin, G. P. (1967) Carbonaceous Matter in Meteorites (Organic Compounds, Diamonds, Graphite) (Moscow: Nauka Press). In Russian. Trans. NASA-TT-F-582.Google Scholar
  152. de Vries, M.S., Reihs, K., Wendt, H.R., Golden, W.G., Hunziker, H.E., Fleming, R., Peterson, E. and Chang, S. (1993) Search for C60 in the Murchison meteorite. Geochim. Cosmochim. Acta, in press.Google Scholar
  153. Wasson, J. T. (1974) Meteorites, Classification and Properties. Springer-Verlag.Google Scholar
  154. Watson, W. D. (1976) Interstellar molecule reactions. Rev. Mod. Phys. 48, 513–552.CrossRefGoogle Scholar
  155. Willner, S. R., Russell, R. W., Puetter, R. C., Soifer, B. T. and Harvey, P. M. (1979) The 4–8µ spectrum of the galactic center. Astrophys. J. Lett. 229, L65–L68.CrossRefGoogle Scholar
  156. Wilson, R. W., Solomon, P. M., Penzias, A. A. and Jefferts, K. B. (1971) Millimeter observations of CO, CN, and CS emission from IRC+ 10216. Astrophys. J. 169, L35–L37.CrossRefGoogle Scholar
  157. Wing, M. R. and Bada, J. L. (1991) Geochromatography on the parent body of the carbonaceous chondrite Ivuna. Geochim. Cosmochim. Acta 55, 2937–2942.CrossRefGoogle Scholar
  158. Woese, C. R. (1987) Bacterial Evolution. Microbiol. Rev. 51, 221–271.Google Scholar
  159. Wolman, Y., Haverland, W. J. and Miller, S. L. (1972) Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc. Natl. Acad. Sci. USA 69, 809–811.PubMedCrossRefGoogle Scholar
  160. Wood, J. A. and Chang, S. Eds. (1985) The Cosmic History of the Biogenic Elements and Compounds. NASA-SP-476, U.S. Government Printing Office, Washington, D.C.Google Scholar
  161. Wood, J.A. and Morfill, G.E. (1988) Solar nebula models. in J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System, University of Arizona Press, pp. 329–347.Google Scholar
  162. Yamamoto, S., Saito, S., Kawaguchi, K., Kaifu, K., Suzuki, H. and Ohishi, M. (1987) Laboratory detection of a new carbon-chain molecule C3S and its astronomical identification. Astrophys. J. 317, L119–L121.CrossRefGoogle Scholar
  163. Yang, J. and Epstein, S. (1983) Interstellar organic matter in meteorites. Geochim. Cosmochim. Acta 47, 2199–2216.CrossRefGoogle Scholar
  164. Yang, J. and Epstein, S. (1984) Relic interstellar grains in Murchison meteorite, Nature 311, 544–547.CrossRefGoogle Scholar
  165. Yang, J. and Epstein (1985) A search for presolar organic matter in meteorites. Geophys. Res. Lett. 12, 73–76.CrossRefGoogle Scholar
  166. Yuen, G. and Kvenvolden, K. A. (1973) Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature 246, 301–302.CrossRefGoogle Scholar
  167. Yuen, G., Blair, N., Des Marais, D. J. and Chang, S. (1984) Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature 307, 252–254.PubMedCrossRefGoogle Scholar
  168. Yuen, G. U., Pecore, J. A., Kerridge, J. F., Pinnavaia, T. J., Rightor, E. G., Flores, J., Wedeking, K. M. Mariner, R., Des Marais, D. J. and Change, S. (1991) Carbon isotopic fractionation in Fischer-Tropsch type reactions. Lunar Planet. Sci. 21, 1367–1368.Google Scholar
  169. Zeitman, B., Chang, S. and Lawless, J. G. (1974) Dicarboxylic acids from electrical discharge. Nature 251, 42–43.CrossRefGoogle Scholar
  170. Zenobi, R., Philippoz, J.-M., Buseck, P. R. and Zare, R. N. (1989) Spatially resolved organic analysis of the Allende meteorite. Science 246, 1026–1029.PubMedCrossRefGoogle Scholar
  171. Zinner, E. (1988) Interstellar cloud material in meteorites. in J. F. Kerridge and M. S. Mathews (eds.) Meteorites and the Early Solar System, Univ. of Arizona Press, Tucson, pp. 956–983.Google Scholar
  172. Zolensky, M. and McSween, H. Y. (1988) Aqueous alteration. in J. F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, Univ. of Arizona Press, Tucson, pp. 114–143.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA
  2. 2.Planetary Biology BranchNASA-Ames Research CenterUSA

Personalised recommendations