Skip to main content

Chemistry of the Solar Nebula

  • Chapter
The Chemistry of Life’s Origins

Part of the book series: NATO ASI Series ((ASIC,volume 416))

Abstract

We review theoretical models of thermochemical processes in the solar nebula which consider the effects of nebular dynamics on the chemistry of the abundant, chemically reactive volatile elements H, O, C, N, and S. Specific, testable predictions of these models are described. We also use the theoretical models to interpret the latest available data on the abundances and molecular speciation of volatiles in comet P/Halley.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abelson, P.H. 1966. Chemical events on the primitive Earth. Proc. Natl. Acad. Sci. (USA) 55, 1365–1372.

    Article  CAS  Google Scholar 

  • A’Hearn, M.F., P.D. Feldman, and D.G. Schleicher 1983. The discovery of S2 in comet IRAS-Araki-Alcock 1983d. Astrophys. J. Lett. 274, L99–L103.

    Article  Google Scholar 

  • Allen, M., M. Delitsky, W. Huntress, Y. Yung, W.H. Ip, R. Schwenn, H. Rosenbauer, E. Shel ley, H. Balsiger, and J. Geiss 1987. Evidence for methane and ammonia in the coma of comet Halley. Astron. Astrophys. 187, 502–512.

    CAS  PubMed  Google Scholar 

  • Altenhoff, W.J., W. Bartla, W.K. Huchtmeier, J. Schmidt, P. Stumpff, and M. Walmsley 1983. Radio observations of comet 1983d. Astron. Astrophys. 187, 502–512.

    Google Scholar 

  • Amari, S., E. Anders, A. Virag, and E. Zinner 1990. Interstellar graphite in meteorites. Nature 345, 238–240.

    Article  CAS  Google Scholar 

  • Anders, E. 1968. Chemical processes in the early solar system, as inferred from meteorites. Acc. Chem. Res. 1, 289–298.

    Article  CAS  Google Scholar 

  • Anders, E., and M. Ebihara 1982. Solar system abundances of the elements. Geochim. Cosmochim. Acta 46, 2363–2380.

    Article  CAS  Google Scholar 

  • Anders, E., and N. Grevesse 1989. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214.

    Article  CAS  Google Scholar 

  • Anders, E., R. Hayatsu, and M.H. Studier 1973. Organic compounds in meteorites. Science 182, 781–790.

    Article  CAS  PubMed  Google Scholar 

  • Balsiger, H., K. Altwegg, F. Bühler, J. Geiss, A.G. Ghielmetti, B.E. Goldstein, R. Goldstein, P. Hemmerich, G. Kulzer, A.J. Lazarus, A. Meier, M. Neugebauer, U. Rettenmund, H. Rosenbauer, R. Schwen, E.G. Shelley, E. Ungstrup, and D.T. Young 1986. Ion composition and dynamics at comet Halley. Nature 321, 330–334.

    Article  CAS  Google Scholar 

  • Barber, D.J. 1985. Phyllosilicates and other layer-structured minerals in stony meteorites. Clay Minerals 20, 415–454.

    Article  CAS  Google Scholar 

  • Barshay, S.S. 1981. Combined condensation-accretion models of the terrestrial planets. Ph.D. thesis, Massachusetts Institute of Technology. 67pp.

    Google Scholar 

  • Barshay, S.S. and J.S. Lewis 1976. Chemistry of primitive solar material. Ann. Rev. Astron. Astrophys. 14, 81–94.

    Article  CAS  Google Scholar 

  • Bell, M.B., L.A. Avery, H.E. Matthews, P.A. Feldman, J.K.G. Watson, S.C. Madden, and W.M. Irvine 1988. A study of C3HD in cold interstellar clouds. Astrophys. J. 326, 924–930.

    Article  CAS  PubMed  Google Scholar 

  • Bernatowicz, T., G. Fraundorf, T. Ming, E. Anders, B. Wopenka, E. Zinner, and P. Fraundorf 1987. Evidence for interstellar SiC in the Murray carbonaceous chondrite. Nature 330, 728–730.

    Article  CAS  Google Scholar 

  • Bernatowicz, T., S. Amari, E.K. Zinner, and R.S. Lewis 1991. Interstellar grains within interstellar grains. Astrophys. J. 373, L73–L76.

    Article  CAS  Google Scholar 

  • Biémont, E., M. Baudoux, R.L. Kurucz, W. Ansbacher, and E.H. Pinnington 1991. The solar abundance of iron: a “final” word! Astron. Astrophys. 249, 539–544.

    Google Scholar 

  • Biloen, P. and W.M.H. Sachtler 1981. Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts. in Advances in Catalysis, ed. D.D. Eley, H. Pines, and P.B. Weisz, Academic Press, NY, pp. 165–216.

    Chapter  Google Scholar 

  • Bischoff, A. and H. Palme 1987. Composition and mineralogy of refractory-metal-rich assemblages from a Ca,Al-rich inclusion in the Allende meteorite. Geochim. Cosmochim. Acta 51, 2733–2748.

    Article  CAS  Google Scholar 

  • Bjoraker, G.L., M.J. Mumma, and H.P. Larson 1989. The value of D/H in the Martian atmosphere: Measurements of HDO and H2O using the Kuiper Airborne Observatory. in Abstracts of the Fourth International Conference on Mars, pp. 69–70.

    Google Scholar 

  • Black, D.C. and R.O. Pepin 1969. Trapped neon in meteorites. II. Earth Planet. Sci. Lett. 6, 395–405.

    Article  CAS  Google Scholar 

  • Blake, G.A., E.C. Sutton, C.R. Masson, and T.G. Phillips 1987. Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophys. J. 315, 621–645.

    Article  CAS  Google Scholar 

  • Blum, J.D., G.J. Wasserburg, I.D. Hutcheon, J.R. Beckett, and E.M. Stolper 1988. Origin of opaque assemblages in C3V meteorites: Implications for nebular and planetary processes. Geochim. Cosmochim. Acta 53, 543–556.

    Article  Google Scholar 

  • Boato, G. 1954. The isotopic composition of hydrogen and carbon in the carbonaceous chondrites. Geochim. Cosmochim. Acta 6, 209–220.

    Article  Google Scholar 

  • Bockelée-Morvan, D. and J. Crovisier 1990. in Asteroids, Comets, and Meteors III, ed. C.I. Lagerkvist et al, Uppsala University Press, Uppsala, pp. 263–265.

    Google Scholar 

  • Bockelée-Morvan, D., P. Colom, J. Crovisier, D. Despois, and G. Paubert 1991. Microwave detection of hydrogen sulphide and methanol in comet Austin (l989cl). Nature 350, 318–320.

    Article  Google Scholar 

  • Boesgaard, A.M. and G. Steigman 1985. Big bang nucleosynthesis: Theories and observations. Ann. Rev. Astron. Astrophys. 23, 319–379.

    Article  CAS  Google Scholar 

  • Boice, D.C, W.F. Huebner, M.J. Sablik, and I. Konno 1990. Distributed coma sources and the CH4/CO ratio in comet Halley. Geophys. Res. Lett. 17, 1813–1816.

    Article  Google Scholar 

  • Bond, G.C. 1962. Catalysis by Metals, Academic Press, London.

    Google Scholar 

  • Boss, A.P., G.E. Morfill, and W.M. Tscharnutter 1989. Models of the formation and evolution of the solar nebula. in The Origin and Evolution of Planetary and Satellite Atmospheres, ed. S.K. Atreya, J.B. Pollack, and M.S. Matthews, University of Arizona Press, Tucson, pp. 35–77.

    Google Scholar 

  • Boström, K. and K. Fredriksson 1966. Surface conditions of the Orgueil parent meteorite body as indicated by mineral associations. Smithson. Misc. Coll. 151, No. 3, 39pp.

    Google Scholar 

  • Bradley, J.P. and D.E. Brownlee 1986. Analytical electron microscopy of thin-sectioned interplanetary dust particles. Science 231, 1542–1544.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, J.P., D.E. Brownlee, and P. Fraundorf 1984. Carbon compounds in interplanetary dust: Evidence for formation by heterogeneous catalysis. Science 223, 56–58.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, J.P., S.A. Sandford, and R.M. Walker 1988. Interplanetary dust particles, in Meteorites and the Early Solar System, ed. J.F. Kerridge and M.S. Matthews, University of Arizona Press, Tucson, AZ, pp. 861–895.

    Google Scholar 

  • Bratton, R.J. and G.W. Brindley 1965. Kinetics of vapor phase hydration of magnesium oxide. Part 2. Dependence on temperature and water vapor pressure. Trans. Faraday Soc. 61, 1017–1025.

    Article  CAS  Google Scholar 

  • Briggs, M.H. 1963. Evidence for an extraterrestrial origin for some organic constituents of meteorites. Nature 197, 1290.

    Article  CAS  Google Scholar 

  • Brown, R.D. and E. Rice 1981. Interstellar deuterium chemistry. Phil. Trans. Roy. Soc. London A303, 523–533.

    Google Scholar 

  • Bunch T.E. and S. Chang 1980. Carbonaceous chondrites-II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta 44, 1543–1577.

    Article  CAS  Google Scholar 

  • Burbidge, E.M., G.R. Burbidge, W.A. Fowler, and F. Hoyle 1957. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650.

    Article  Google Scholar 

  • Cameron, A.G.W. 1966. The accumulation of chondritic material. Earth Planet. Sci. Lett. 1, 93–96.

    Article  Google Scholar 

  • Cameron, A.G.W. 1973. Abundances of the elements in the solar system. Space Sci. Rev. 15, 121–146.

    Article  CAS  Google Scholar 

  • Cameron, A.G.W. 1978. Physics of the primitive solar accretion disk. Moon and Planets 18, 5–40.

    Article  Google Scholar 

  • Cameron, A.G.W. 1982. Elemental and nuclidic abundances in the solar system, in Essays in Nuclear Astrophysics, eds., C.A. Barnes, D.D. Clayton, and D.N. Schramm, Cambridge University Press, Cambridge, pp. 23–43.

    Google Scholar 

  • Cameron, A.G.W. 1985. Formation and evolution of the primitive solar nebula. in Protostars and Planets II, eds., D.C. Black and M.S. Matthews, University of Arizona Press, Tucson, pp. 1073–1099.

    Google Scholar 

  • Cameron, A.G.W. and M.B. Fegley 1982. Nucleation and condensation in the primitive solar nebula. Icarus 52, 1–13.

    Article  CAS  Google Scholar 

  • Cameron, A.G.W., S.A. Colgate, and L. Grossman 1973. Cosmic abundance of boron. Nature 243, 204–207.

    Article  CAS  Google Scholar 

  • Christoffersen, R. and P.R. Buseck 1983. Epsilon carbide: A low temperature component of interplanetary dust particles. Science 222, 1327–1329.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, F.W. 1889. The relative abundances of the chemical elements. Bull. Phil. Soc. Washington 11, 131.

    Google Scholar 

  • Clayton, R.N. and T.K. Mayeda 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–161.

    Article  CAS  Google Scholar 

  • Clayton, R.N., L. Grossman, and T.K. Mayeda 1973. A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488.

    Article  CAS  PubMed  Google Scholar 

  • Combes, M., V.I. Moroz, J. Crovisier, T. Encrenaz, J.P. Bibiring, A.V. Grigoriev, N.F. Sanko, N. Coron, J.F. Crifo, R. Gispert, D. Bockelée-Morvan, Y.U. Nikolsky, V.A. Krasnopolsky, T. Owen, C. Emerich, J.M. Lamarre, and F. Rocard 1988. The 2.5 -12 µm spectrum of comet Halley from the IKS-Vega experiment. Icarus 76, 404–436.

    Article  CAS  PubMed  Google Scholar 

  • Coustenis, A., B. Bézard, and D. Gautier 1989. Titan’s atmosphere from Voyager infrared observations II. The CH3D abundance and D/H ratio from the 900-1200 cm-1 spectral region. Icarus 82, 67–80.

    Article  CAS  Google Scholar 

  • Crovisier, J., D. Despois, D. Bockelée-Morvan, P. Colom, and G. Paubert 1991. Microwave observations of hydrogen sulfide and searches for other sulfur compounds in comets Austin (l989cl) and Levy (1990c). Icarus 93, 246–258.

    Article  CAS  Google Scholar 

  • Danks, A.C., D.L. Lambert, and C. Arpigny 1974. The 12C/13C ratio in comet Kohoutek (l973f). Astrophys. J. 194, 745–751.

    Article  CAS  Google Scholar 

  • Davidson, D.W., M.A. Desando, S.R. Gough, Y.P. Handa, C.I. Ratcliffe, J.A. Ripmeester, and J.S. Tse 1987. A clathrate hydrate of carbon monoxide. Nature 328, 418–419.

    Article  CAS  Google Scholar 

  • DeBergh, C, B.L. Lutz, T. Owen, J. Brault, and J. Chauville 1986. Monodeuterated methane in the outer solar system. II. Its detection on Uranus at 1.6 microns. Astrophys. J. 311, 501–510.

    Article  CAS  Google Scholar 

  • DeBergh, C., B.L. Lutz, T. Owen,, and J.P. Maillard 1990. Monodeuterated methane in the outer solar system. IV. Its detection and abundance on Neptune. Astrophys. J. 355, 661–666.

    Article  CAS  Google Scholar 

  • DeBergh, C., B. Bézard, T. Owen, D. Crisp, J.P. Maillard, and B.L. Lutz 1991. Deuterium on Venus:Observations from Earth. Science 251, 547–549.

    Article  CAS  Google Scholar 

  • Delsemme, A.H. 1976. Chemical nature of the cometary snows. Mém. Soc. Roy. Sci. Liège IX, 135–145.

    Google Scholar 

  • Delsemme, A.H. 1982. Chemical composition of cometary nuclei, in Comets, ed. L.L. Wilken-ing, University of Arizona Press, Tucson, pp. 85–130.

    Google Scholar 

  • Delsemme, A.H. 1988. The chemistry of comets. Phil Trans. Roy. Soc. London A325, 509–523.

    Google Scholar 

  • Delsemme, A.H. and D.C. Miller 1970. Physico-chemical phenomena in comets--II. Gas ad sorption in the snows of the nucleus. Planet. Space Sci. 18, 717–730.

    Article  CAS  Google Scholar 

  • Delsemme, A.H. and P. Swings 1952. Hydrates de gaz dans les Noyaux Cométaires et les Grains Interstellaires. Annales d’Astrophys. 15, 1–6.

    CAS  Google Scholar 

  • Delsemme, A.H. and A. Wenger, Physico-chemical phenomena in comets--I. Experimental study of snows in a cometary environment. Planet. Space Sci. 18, 709–715.

    Google Scholar 

  • dePater, I., P. Palmer, and L.E. Snyder 1991. A review of radio interferometric imaging of comets. in Comets in the Post-Halley Era, ed. R. Newburn and J. Rahe, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Despois, D., J. Crovisier, D. Bockelée-Morvan, J. Schraml, T. Forveille, and E. Gerard 1986. Observations of hydrogen cyanide in comet Halley. Astron. Astrophys. 160, L11–L12.

    CAS  Google Scholar 

  • Dictor, R.A. and A.T. Bell 1986. Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. J. Catalysis 97, 121–136.

    Article  CAS  Google Scholar 

  • Donahue, T.M., J.H. Hoffman, R.R. Hodges, Jr., and A.J. Watson 1982. Venus was wet: A measurement of the ratio of D to H. Science 216, 630–633.

    Article  CAS  PubMed  Google Scholar 

  • Drapatz, S., H.P. Larson, and D.S. Davis 1987. Search for methane in comet P/Halley. Astron. Astrophys. 187, 497–501.

    CAS  Google Scholar 

  • Dry, M.E. 1981. The Fischer-Tropsch synthesis, in Catalysis Science and Technology, vol. 1, eds., J.R. Anderson and M. Boudart, Springer-Verlag, Berlin, pp. 159–255.

    Google Scholar 

  • Dry, M.E., T. Shingles, and L.J. Boshoff 1972. Rate of the Fischer-Tropsch reaction over iron catalysts. J. Catalysis 25, 99–104.

    Article  CAS  Google Scholar 

  • DuFresne, E.R. and E. Anders 1962. On the chemical evolution of the carbonaceous chondrites. Geochim. Cosmochim. Acta 26, 1085–1114.

    Article  CAS  Google Scholar 

  • Eberhardt, P., D. Krankowsky, W. Schulte, U. Dolder, P. Lämmerzahl, J.J. Berthelier, J. Wow-eries, U. Stubbemann, R.R. Hodges, J.H. Hoffman, and J.M. Illiano 1987a. The CO and N2 abundance in comet P/Halley. Astron. Astrophys. 187, 481–484.

    CAS  Google Scholar 

  • Eberhardt, P., U. Dolder,, W. Schulte, D. Krankowsky, P. Lämmerzahl, J.H. Hoffman, R.R. Hodges, J.J. Berthelier, and J.M. Illiano 1987b. The D/H ratio in water from comet P/Halley. Astron. Astrophys. 187, 435–437.

    Google Scholar 

  • Eberhardt, P., R. Meir, D. Krankowsky, and R.R. Hodges 1991. Methanol abundance in comet P/Halley from in-situ measurements. Bull Amer. Astron. Soc. 23, 1161.

    Google Scholar 

  • El Goresy, A., K. Nagel, and P. Ramdohr 1978. Fremdlinge and their noble relatives. Proc. Lunar Planet. Sci. Conf. 9, 1249–1266.

    Google Scholar 

  • Engel, S., J.I. Lunine, and J.S. Lewis 1990. Solar nebula origin for volatile gases in Halley’s comet. Icarus 85, 380–393.

    Article  Google Scholar 

  • Fegley, B., Jr. 1983. Primordial retention of nitrogen by terrestrial planets and meteorites. Proc. 13th Lunar Planet. Sci. Conf. J. Geophys. Res. 88, A853-A868.

    Article  CAS  Google Scholar 

  • Fegley, B., Jr., 1988. Cosmochemical trends of volatile elements in the solar system, in Workshop on the Origins of Solar Systems, ed. J.A. Nuth and P. Sylvester, LPI Technical Report No. 88-04, pp. 51–60.

    Google Scholar 

  • Fegley, B., Jr. 1990. Disequilibrium chemistry in the solar nebula and early solar system: Implications for the chemistry of comets. in Proc. of the Comet Nucleus Sample Return Workshop, ed. S. Chang, NASA CP, in press.

    Google Scholar 

  • Fegley, B., Jr. and T.R. Ireland 1991. Chemistry of the rare earth elements in the solar nebula. European J. Solid State Inorg. Chem. 28, 335–346.

    CAS  Google Scholar 

  • Fegley, B., Jr., and A.S. Kornacki 1984. The geochemical behavior of refractory noble metals and lithophile trace elements in refractory inclusions in carbonaceous chondrites. Earth Planet. Sci. Lett. 68, 181–197.

    Article  CAS  Google Scholar 

  • Fegley, B. Jr., and J.S. Lewis 1980. Volatile element chemistry in the solar nebula: Na, K, F, Cl, Br, and P. Icarus 41, 439–455.

    Article  CAS  Google Scholar 

  • Fegley, B., Jr., and H. Palme 1985. Evidence for oxidizing conditions in the solar nebula from Mo and W depletions in refractory inclusions in carbonaceous chondrites. Earth Planet Sci. Lett. 72, 311–326.

    Article  CAS  Google Scholar 

  • Fegley, B., Jr. and R.G. Prinn 1988. The predicted abundances of deuterium-bearing gases in the atmospheres of Jupiter and Saturn. Astrophys. J. 326, 490–508.

    Article  CAS  Google Scholar 

  • Fegley, B., Jr., and R.G. Prinn 1989. Solar nebula chemistry: Implications for volatiles in the solar system, in The Formation and Evolution of Planetary Systems, eds. H.A. Weaver and L. Danly, Cambridge University Press, Cambridge, pp. 171–211.

    Google Scholar 

  • Feldman, P.D. 1991. Ultraviolet spectroscopy of cometary comae. in Comets in the Post-Halley Era, ed. R. Newburn and J. Rahe, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 139–148.

    Chapter  Google Scholar 

  • Festou, M.C., P.D. Feldman, M.F. AHearn, C. Arpigny, C.B. Cosmovici, A.C. Danks, L.A. McFadden, R. Gilmozzi, P. Patriarchi, G.P. Tozzi, M.K. Wallis, and H.A. Weaver 1986. IUE observations of comet Halley during the Vega and Giotto encounters. Nature 321, 361–363.

    Article  CAS  Google Scholar 

  • Fredriksson, K. and J.F. Kerridge 1988. Carbonates and sulfates in CI chondrites: Formation by aqueous activity on the parent body. Meteoritics 23, 35–44.

    CAS  PubMed  Google Scholar 

  • Fuchs, L. and M. Blander 1980. Refractory metal particles in refractory inclusions in the Allende meteorite. Proc. Lunar Planet. Sci. Conf. 11, 929–944.

    Google Scholar 

  • Geballe, T.R., F. Bass, J.M. Greenberg, and W. Schutte 1985. New infrared absorption features due to solid phase molecules containing sulfur in W33A. Astron. Astrophys. 146, L6-L8.

    CAS  Google Scholar 

  • Geiss, J. and H. Reeves 1981. Deuterium in the solar system. Astron. Astrophys. 93, 189–199.

    CAS  Google Scholar 

  • Geiss, J., K. Altwegg, E. Anders, H. Balsiger, W.H. Ip, A. Meier, M. Neugebauer, H. Rosenbauer, and E.G. Shelley 1991. Interpretation of the ion mass spectra in the mass per charge range 25-35 amu/e-obtained in the inner coma of Halley’s comet by the HIS-sensor of the Giotto IMS experiment. Astron. Astrophys. 247, 226–234.

    Google Scholar 

  • Gerin, M., H.A. Wooten, F. Combes, F. Boulanger, W.L. Peters, T.B.H. Kuiper, P.J. Encrenaz, and M. Bogey 1987. Deuterated C3H2 as a clue to deuterium chemistry. Astron. Astrophys. 173, L1-L4.

    CAS  Google Scholar 

  • Goldschmidt, V.M. 1937. Geochemische Verteilungsgesetze der Elemente IX. Skrifter Norske Videnscaps-Akademiend, Oslo I. mat. Natur. Kl. No. 4.

    Google Scholar 

  • Goldschmidt, V.M. 1954. Geochemistry, Oxford: Clarendon Press.

    Google Scholar 

  • Greenberg, J.M. 1991. Physical, chemical, and optical interactions with interstellar dust, in Chemistry in Space, ed. J.M. Greenberg and V. Pirronello, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 227–261.

    Chapter  Google Scholar 

  • Grevesse, N. 1984. Abundances of the elements in the Sun. in Frontiers of Astronomy and Astrophysics, ed. R. Pallavicini, Ital. Astron. Soc, Florence, Italy, pp. 71–82.

    Google Scholar 

  • Grevesse, N., D.L. Lambert, A.J. Sauval, E.F. van Dishoeck, C.B. Farmer, and R.H. Norton 1990. Identification of solar vibration-rotation lines of NH and the solar nitrogen abun dance. Astron. Astrophys. 232, 225–230.

    CAS  Google Scholar 

  • Grevesse, N., D.L. Lambert, A.J. Sauval, E.F. van Dishoeck, C.B. Farmer, and R.H. Norton 1991. Vibration-rotation bands of CH in the solar infrared spectrum and the solar carbonabundance. Astron. Astrophys. 242, 488–495.

    CAS  Google Scholar 

  • Grim, R.J.A. and J.M. Greenberg 1987. Photoprocessing of H2S in interstellar grain mantles as an explanation for S2 in comets. Astron. Astrophys. 181, 155–168.

    CAS  Google Scholar 

  • Grinspoon, D.H. and J.S. Lewis 1987. Deuterium fractionation in the presolar nebula: Kinetic limitations on surface catalysis. Icarus 72, 430–436.

    Article  CAS  Google Scholar 

  • Grossman, L. 1972. Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619.

    Article  CAS  Google Scholar 

  • Grossman, L. and J.W. Larimer 1974. Early chemical history of the solar system. Rev. Geo-phys. Space Phys. 12, 71–101.

    Article  CAS  Google Scholar 

  • Guélin, M., W.D. Langer, and R.W. Wilson 1982. The state of ionization in dense molecular clouds. Astron. Astrophys. 107, 107–127.

    Google Scholar 

  • Hagemann, R., G. Nief, and E. Roth 1970. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22, 712–715.

    Article  CAS  Google Scholar 

  • Haltenorth, H. and J. Klinger 1969. Diffusion of hydrogen fluoride in ice. in Physics of Ice, ed. N. Riehl, B. Bullemer, and H. Engelhardt, Plenum Press, NY, pp. 579–584.

    Google Scholar 

  • Hashimoto, A. and L. Grossman 1987. Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite. Geochim. Cosmochim. Acta 51, 1685–1704.

    Article  CAS  Google Scholar 

  • Hayatsu, R. and E. Anders 1981. Organic compounds in meteorites and their origins. Topics in Current Chemistry 99, 1–39.

    Article  CAS  Google Scholar 

  • Herbst, E., N.G. Adams, D. Smith, and DJ. DeFrees 1987. Ion-molecule calculation of the abundance ratio of CCD to CCH in dense interstellar clouds. Astrophys. J. 312, 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Hoban, S., M. Mumma, D.C. Reuter, M. DiSanti, R.R. Joyce, and A. Storrs 1991. A tentative identification of methanol as the progenitor of the 3.52 µm emission feature in several comets. Icarus 93, 122–134.

    Article  Google Scholar 

  • Holweger, H., C. Heise, and M. Kock 1990. The abundance of iron in the Sun derived from photospheric Fe II lines. Astron. Astrophys. 232, 510–515.

    CAS  Google Scholar 

  • Huebner, W.F. 1987. First polymer in space identified in comet Halley. Science 237, 628–630.

    Article  CAS  PubMed  Google Scholar 

  • Huebner, W.F., D.C. Boice, and C.M. Sharp 1987. Polyoxymethylene in comet Halley. Astrophys. J. 320, L149–L152.

    Article  CAS  Google Scholar 

  • Huebner, W.F., L.E. Snyder, and D. Buhl 1974. HCN radio emission from comet Kohoutek (l973f). Icarus 23, 580–584.

    Article  CAS  Google Scholar 

  • Huntress, W.T., M. Allen, and M. Delitsky 1991. Carbon suboxide in comet Halley? Nature 352, 316–318.

    Article  CAS  Google Scholar 

  • Ip, W.H., H. Balsiger, J. Geiss, B.E. Goldstein, G. Kettman, A.J. Lazarus, A. Meier, H. Rosen-bauer, R. Schwenn, and E. Shelley 1990. Giotto IMS measurements of the production rate of hydrogen cyanide in the coma of comet Halley. Ann. Geophys. 8, 319–326.

    Google Scholar 

  • Irvine, W.M. and R.F. Knacke 1989. The chemistry of interstellar gas and grains in The Origin and Evolution of Planetary and Satellite Atmospheres, ed. S.K. Atreya, J.B. Pollack, and M.S. Matthews, University of Arizona Press, Tucson, pp. 3–34.

    Google Scholar 

  • Jeffery, P.M. and J.H. Reynolds 1961. Origin of excess 129Xe in stone meteorites. J. Geophys. Res. 66, 3582–3583.

    Article  CAS  Google Scholar 

  • Kawara, K., B. Gregory, T. Yamamoto, and H. Shibai 1988. Infrared spectroscopic observation of methane in comet P/Halley. Astron. Astrophys. 207, 174–181.

    CAS  Google Scholar 

  • Kelley, K.K. 1937. Contributions to the Data on Theoretical Metallurgy VII. The Thermodynamic Properties of Sulphur and its Inorganic Compounds, U.S. Bureau of Mines Bull. No. 406, U.S. GPO, Washington, D.C.

    Google Scholar 

  • Kerridge, J.F., A.L. MacKay, and W.V. Boynton 1979. Magnetite in CI carbonaceous meteorites: Origin by aqueous activity on a planetesimal surface. Science 205, 395–397.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.J. and M.F. A’Hearn 1991. Upper limits of SO and SO2 in comets. Icarus 90, 79–95.

    Article  CAS  Google Scholar 

  • Kim, S.J., M.F. A’Hearn, and S.M. Larson 1990. Multi-cycle fluorescence: Application to S2 in Comet IRAS-Araki-Alcock 1983 VII. Icarus 87, 440–451.

    Article  CAS  Google Scholar 

  • Kleine, M., S. Wyckoff, P.A. Wehinger, and B.A. Peterson 1991. The carbon isotope abundance ratios in comets. Bull Amer. Astron. Soc. 23, 1166.

    Google Scholar 

  • Kornacki, A.S., and B. Fegley, Jr. 1984. Origin of spinel-rich chondrules and inclusions in carbonaceous and ordinary chondrites. Proc. 14th Lunar Planet. Sci. Conf. J. Geophys. Res. 89, B588–B596.

    Article  Google Scholar 

  • Kornacki, A.S., and B. Fegley, Jr. 1986. The abundance and relative volatility of refractory trace elements in Allende Ca, Al-rich inclusions: Implications for chemical and physical processes in the solar nebula. Earth Planet. Sci. Lett. 75, 297–310.

    Google Scholar 

  • Korth, A., A. K. Richter, A. Loidl, K.A. Anderson, C.W. Carlson, D.W. Curtis, R.P. Lin, H. Réme, J.A. Sauvaud, C. d’Uston, F. Cotin, A. Cros, and D.A. Mendis 1986. Mass spectra of heavy ions near comet Halley. Nature 321, 335–336.

    Article  CAS  Google Scholar 

  • Kozasa, T. and H. Hasegawa 1988. Formation of iron-bearing materials in a cooling gas of solar composition. Icarus 73, 180–190.

    Article  CAS  Google Scholar 

  • Krankowsky, D. 1991. The composition of comets. in Comets in the Post-Halley Era, ed. R.L. Newburn, J. Rahe, and M. Neugebauer, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 855–877.

    Google Scholar 

  • Krankowsky, D., P. Lämmerzahl, I. Herrwerth, J. Woweries, P. Eberhardt, U. Dolder, U. Herrmann, W. Schulte, J.J. Berthelier, J.M. Iliano, R.R. Hodges, and J.H. Hoffmann 1986. In situ gas and ion measurements at comet Halley. Nature 321, 326–330.

    Article  CAS  Google Scholar 

  • Krebs, H.J., H.P. Bonzel, and G. Gafner 1979. A model study of the hydrogenation of CO over polycrystalline iron. Surface Sci. 88, 269–283.

    Article  CAS  Google Scholar 

  • Lacy, J.H., J.S. Carr, N.J. Evans II, F. Baas, J.M. Achtermann, and J.F. Arens 1991. Discovery of interstellar methane: observations of gaseous and solid CH4 absorption toward young stars in molecular clouds. Astrophys. J. 376, 556–590.

    Article  CAS  Google Scholar 

  • Langer, W.D., F.P. Schloerb, R.L. Snell, and J.S. Young 1980. Detection of deuterated cyanoacetylene in the interstellar cloud TMC-1. Astrophys. J. 239, L125–L128.

    Article  CAS  Google Scholar 

  • Larimer, J.W. 1967. Chemical fractionations in meteorites-I. Condensation of the elements. Geochim. Cosmochim. Acta 31, 1215–1238.

    Article  CAS  Google Scholar 

  • Larimer, J.W., 1973. Chemical fractionations in meteorites--VII. Cosmothermometry and cosmobarometry. Geochim. Cosmochim. Acta 37, 1603–1623.

    Article  CAS  Google Scholar 

  • Larimer, J.W. 1975. The effect of C/O ratio on the condensation of planetary material, Geochim. Cosmochim. Acta 39, 389–392.

    Article  CAS  Google Scholar 

  • Larimer, J.W. 1988. The cosmochemical classification of the elements. in Meteorites and the Early Solar System, ed. J.F. Kerridge and M.S. Matthews, pp. 375–389, Tucson: University of Arizona Press.

    Google Scholar 

  • Larimer, J.W. and E. Anders 1967. Chemical fractionations in meteorites, 2, Abundance patterns and their interpretation. Geochim. Cosmochim. Acta 31, 1239–1270.

    Article  CAS  Google Scholar 

  • Larimer, J.W. and M. Bartholomay 1979. The role of carbon and oxygen in cosmic gases: some applications to the chemistry and mineralogy of enstatite chondrites, Geochim. Cosmochim. Acta 43, 1453–1466.

    Article  Google Scholar 

  • Larson, H.P., H.A. Weaver, M.J. Mumma, and S. Drapatz 1989. Airborne infrared spectroscopy of comet Wilson (19861) and comparisons with comet Halley. Astrophys. J. 338, 1106–1114.

    Article  CAS  Google Scholar 

  • Latimer, W.M. 1950. Astrochemical problems in the formation of the Earth. Science 112, 101–104.

    Article  CAS  PubMed  Google Scholar 

  • Layden, G.K. and G.W. Brindley 1963. Kinetics of vapor phase hydration of magnesium oxide. J. Amer. Ceram. Soc. 46, 518–522.

    Article  CAS  Google Scholar 

  • Lebofsky, L.A. and M.B. Fegley, Jr. 1976. Laboratory reflection spectra for the determination of chemical composition of icy bodies. Icarus 28, 379–387.

    Article  CAS  Google Scholar 

  • Lecluse, C. and F. Robert 1992. Origin of the deuterium enrichment in the solar system. Meteoritics 27, 248.

    Google Scholar 

  • Lee, T. 1988. Implications of isotopic anomalies for nucleosynthesis. in Meteorites and the Early Solar System, ed. J.F. Kerridge and M.S. Matthews, University of Arizona Press, Tucson, pp. 1063–1089

    Google Scholar 

  • Lewis, J.S. 1972a. Metal/silicate fractionation in the solar system. Earth Planet Sci. Lett. 15, 286–290.

    Article  CAS  Google Scholar 

  • Lewis, J.S. 1972b. Low temperature condensation from the solar nebula. Icarus 16, 241–252.

    Article  CAS  Google Scholar 

  • Lewis, J.S. 1974. The temperature gradient in the solar nebula. Science 136, 440–443.

    Article  Google Scholar 

  • Lewis, J.S., S.S. Barshay, and B. Noyes 1979. Primordial retention of carbon by the terrestrial planets. Icarus 37, 190–206.

    Article  CAS  Google Scholar 

  • Lewis, J.S., and R.G. Prinn 1980. Kinetic inhibition of CO and N2 reduction in the solar nebula. Astrophys. J. 238, 357–364.

    Article  CAS  Google Scholar 

  • Lewis, R.S., T. Ming, J.F. Wacker, E. Anders, and E. Steel 1987. Interstellar diamonds in meteorites. Nature 326, 160–162.

    Article  CAS  Google Scholar 

  • Lin, D.N.C. and J. Papaloizou 1985. On the dynamical origin of the solar system in Protostars and Planets II, ed. D.C. Black and M.S. Matthews, University of Arizona Press, Tucson, pp. 981–1072.

    Google Scholar 

  • Lohn, B. and A. El Goresy 1992. Morphologies and chemical composition of individual magnetite grains in CI and CM chondrites: A potential genetic link to their origin? Meteoritics 27, 252.

    Google Scholar 

  • Lunine, J.I., 1989. Primitive bodies: Molecular abundances in comet Halley as probes of cometary formation environments. in The Formation and Evolution of Planetary Systems, ed. H.A. Weaver and L. Danly, Cambridge University Press, Cambridge, pp. 213–242.

    Google Scholar 

  • Lunine, J.I. and D.S. Stevenson 1985. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. 58, 493–531.

    Article  CAS  Google Scholar 

  • Lunine, J.I., S. Engel, B. Rizk, and M. Horanyi 1991. Sublimation and reformation of icy grains in the primitive solar nebula. Icarus 94, 333–344.

    Article  CAS  Google Scholar 

  • MacLeod, J.M., J.W. Avery, and N.W. Broten 1981. Detection of deuterated cyanodiacetylene (DC5N) in Taurus Molecular Cloud 1. Astrophys. J. 251, L33–L36.

    Article  CAS  Google Scholar 

  • MacPherson, G.J., D.A. Wark, and J.T. Armstrong 1988. Primitive material surviving in chondrites: Refractory inclusions. in Meteorites and the Early Solar System, ed. J.F. Kerridge and M.S. Matthews, University of Arizona Press, Tucson, pp. 746–807.

    Google Scholar 

  • Marconi, M.L. and D.A. Mendis 1988. On the ammonia abundance in the coma of Halley’s comet. Astrophys. J. 330, 513–517.

    Article  CAS  Google Scholar 

  • Marconi, MX., D.A. Mendis, A. Korth, R.P. Lin, D.L. Mitchell, and H. Réme 1990. The identification of H3S+ with the ion of mass per charge (m/q) 35 observed in the coma of comet Halley. Astrophys. J. 352, L17–L20.

    Article  CAS  Google Scholar 

  • Mason, B. (ed.) 1971. Handbook of Elemental Abundances in Meteorites. Gordon & Breach, New York.

    Google Scholar 

  • Mason, B. 1979. Cosmochemistry. Part 1. Meteorites, in Data of Geochemistry, Sixth Edition, ed. M. Fleischer, Geol. Surv. Prof. Paper 440-B-1, U.S. Govt. Print. Office, Washington, D.C.

    Google Scholar 

  • Meier, R., P. Eberhardt, D. Krankowsky, and R.R. Hodges, The spatial distribution of the hydrogen sulfide and formaldehyde sources in comet P/Halley, Bull Amer. Astron. Soc. 23, 1167, 1991.

    Google Scholar 

  • Mendybayev, R.A., A.B. Makalkin, V.A. Dorofeyeva, I.L. Khodakovsky, and A.K. Lavrukhina 1986. The role of CO and N2 reduction kinetics in the chemical evolution of the protoplanetary cloud. Geochem. Intl. 8, 105–116.

    Google Scholar 

  • Miller, S.L. 1961. The occurrence of gas hydrates in the solar system. Proc. Natl. Acad. Sci. USA 47, 1798–1808.

    Article  CAS  PubMed  Google Scholar 

  • Miller, S.L. 1969. Clathrate hydrates of air in antarctic ice. Science 165, 489–490.

    Article  CAS  PubMed  Google Scholar 

  • Miller, S.L. and W.D. Smythe 1970. Carbon dioxide clathrate in the Martian ice cap. Science 170, 531–533.

    Article  CAS  PubMed  Google Scholar 

  • Misener, D.J. 1974. Cationic diffusion in olivine to 1400°C and 35 kbar. in Geochemical Transport and Kinetics, edited by A.W. Hofmann, B.J. Giletti, H.S. Yoder, Jr., and R.A. Yund, Carnegie Institution of Washington, Washington, D.C., pp. 117–129.

    Google Scholar 

  • Mitchell, D.L., R.P. Lin, K.A. Anderson, C.W. Carlson, D.W. Curtis, A. Korth, H. Rème, J.A. Sauvaud, C. D’Uston, and D.A. Mendis 1987. Evidence for chain molecules enriched in carbon, hydrogen, and oxygen in comet Halley. Science 237, 626–628.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, D.L., R.P. Lin, K.A. Anderson, C.W. Carlson, D.W. Curtis, A. Korth, H. Rème, J.A. Sauvaud, C. d’Uston, and D.A. Mendis 1989. Complex organic ions in the atmosphere of comet Halley. Adv. Space Res. 9, 35–39.

    Article  CAS  Google Scholar 

  • Morfill, G.E. and H.J. Volk 1984. Transport of dust and vapor and chemical fractionation in the early protosolar cloud. Astrophys. J 287, 371–395.

    Article  CAS  Google Scholar 

  • Mumma, M.J. and D. Reuter 1989. On the identification of formaldehyde in Halley’s comet. Astrophys. J., 344, 940–948.

    Article  CAS  Google Scholar 

  • Mumma, M.J., W.E. Blass H.A. Weaver and H.P. Larson 1988. Measurements of the orthopara ratio and nuclear spin temperature of water vapor in comets Halley and Wilson (19861) and implications for their origin and evolution. in The Formation and Evolution of Planetary Systems: A Collection of Poster Papers, ed. H.A. Weaver, F. Paresce, and L. Danly, STScI publication, pp. 157–168.

    Google Scholar 

  • Mumma, M.J., S.A. Stern, and P.R. Weissman 1992. Comets and the origin of the solar system: Reading the Rosetta stone. in Protostars and Planets III, ed. E.H. Levy, J.I. Lunine, and M.S. Matthews, University of Arizona Press, Tucson, in press.

    Google Scholar 

  • Mumma, M.J., H.A. Weaver and H.P. Larson 1987. The ortho-para ratio of water vapor in comet P/Halley. Astron. Astrophys. 187, 419–424.

    CAS  Google Scholar 

  • Mumma, M.J., H.A. Weaver, H.P. Larson, D.S. Davis, and M. Williams 1986. Detection of water vapor in Halley’s comet. Science 232, 1523–1528.

    Article  CAS  PubMed  Google Scholar 

  • Niederer, F.R., D.A. Papanastassiou, and G.J. Wasserburg 1980 Endemic isotopic anomalies in titanium. Astrophys. J. 240, L73–L77.

    Article  CAS  Google Scholar 

  • Niemeyer, S. and G.W. Lugmair 1984. Titanium isotopic anomalies in meteorites. Geochim. Cosmochim. Acta 48, 1401–1416.

    Article  CAS  Google Scholar 

  • Olberg, M., M. Bester, G. Rau, T. Pauls, G. Winnewisser, L.E.B. Johansson, and Å. Hjalmar-son 1985. A new search for and discovery of deuterated ammonia in three molecular clouds. Astron. Astrophys. 142, Ll–L4.

    Google Scholar 

  • Ormont, A. 1991. Circumstellar chemistry. in Chemistry in Space, ed. J.M. Greenberg and V. Pirronello, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 171–196.

    Chapter  Google Scholar 

  • Oró, J. and A.P. Kimball 1961. Synthesis of purines under possible primitive Earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 94, 217–227.

    Article  PubMed  Google Scholar 

  • Owen, T. 1973. The isotope ratio 12C/13C in comet Tago-Sato-Kosaka 1969g. Astrophys. J. 184, 33–43.

    Article  CAS  Google Scholar 

  • Owen, T., B.L. Lutz, and C. DeBergh 1986. Deuterium in the outer solar system: Evidence for two distinct reservoirs. Nature 320, 244–246.

    Article  CAS  PubMed  Google Scholar 

  • Owen, T., J.P. Maillard, C. DeBergh, and B.L. Lutz 1988. Deuterium on Mars: The abundance of HDO and the value of D/H. Science 240, 1767–1770.

    Article  CAS  PubMed  Google Scholar 

  • Palme, H., and B. Fegley, Jr. 1990. High-temperature condensation of iron-rich olivine in the solar nebula. Earth Planet. Sci. Lett. 101, 180–195.

    Article  CAS  Google Scholar 

  • Palme, H., and F. Wlotzka 1976. A metal particle from a Ca, Al-rich inclusion from the meteorite Allende, and the condensation of refractory siderophile elements. Earth Planet. Sci. Lett. 33, 45–60.

    Article  CAS  Google Scholar 

  • Pilcher, C.B., S.T. Ridgway, and T.B. McCord 1972. Galilean satellites: Identification of water frost. Science 178, 1087–1089.

    Article  CAS  PubMed  Google Scholar 

  • Pillinger, C.T. 1984. Light element stable isotopes in meteorites -from grams to picograms. Geochim. Cosmochim. Acta 48, 2739–2766.

    Article  CAS  Google Scholar 

  • Plescia, J.B. 1987. Cratering history of the Uranian satellites: Umbriel, Titania, and Oberon. J. Geophys. Res. 92, 14918–14932.

    Article  Google Scholar 

  • Podosek, F.A. and T.D. Swindle 1988. Extinct radionuclides. in Meteorites and the Early Solar System, ed. J.F. Kerridge and M.S. Matthews, University of Arizona Press, Tucson, pp. 1093–1113.

    Google Scholar 

  • Prinn, R.G. 1990. On neglect of non-linear momentum terms in solar nebula accretion disk models. Astrophys. J. 348, 725–729.

    Article  Google Scholar 

  • Prinn, R.G., and M.B. Fegley, Jr. 1981. Kinetic inhibition of CO and N2 reduction in circum-planetary nebulae: Implications for satellite composition. Astrophys. J. 249, 308–317.

    Article  CAS  Google Scholar 

  • Prinn, R.G., and B. Fegley, Jr. 1989. Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles. in The Origin and Evolution of Planetary and Satellite Atmospheres, ed. S.K. Atreya, J.B. Pollack, and M.S. Matthews, University of Arizona Press, Tucson, pp. 78–136.

    Google Scholar 

  • Rambaldi, E.R. and J.T. Wasson 1981. Metal and associated phases in Bishunpur, a highly un-equilibrated ordinary chondrite. Geochim. Cosmochim. Acta 45, 1001–1015.

    Article  CAS  Google Scholar 

  • Rambaldi, E.R. and J.T. Wasson 1984. Metal and associated phases in Krymka and Chainpur: Nebular formational processes. Geochim. Cosmochim. Acta 48, 1885–1897.

    Article  CAS  Google Scholar 

  • Renshaw, G.D., C. Roscoe, and P.L. Walker, Jr. 1970. Disproportionation of CO I. Over iron and silicon-iron single crystals. J. Catalysis 18, 164–183.

    Article  CAS  Google Scholar 

  • Reynolds, J.H. 1960. Determination of the age of the elements. Phys. Rev. Lett. 4, 8.

    Article  CAS  Google Scholar 

  • Richardson, S.M. 1978. Vein formation in the CI carbonaceous chondrites. Meteoritics 13, 141–159.

    CAS  Google Scholar 

  • Richet, P., Y. Bottinga, and M. Javoy 1977. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Ann. Rev. Earth Planet. Sci. 5, 65–110.

    Article  CAS  Google Scholar 

  • Ruden, S.P. and D.N.C. Lin 1986. The global evolution of the solar nebula. Astrophys. J. 308, 883–901.

    Article  CAS  Google Scholar 

  • Schloerb, F.P., R.L. Snell, W.D. Langer, and J.S. Young 1981. Detection of deteriocyanobutadiyne (DC5N) in the interstellar cloud TMC-1. Astrophys. J. 251, L37–L42.

    Article  CAS  Google Scholar 

  • Schloerb, F.P., W.M. Kinzel, D.A. Swade, and W.M. Irvine 1987. Observations of HCN in comet P/Halley. Astron. Astrophys. 187, 475–480.

    CAS  PubMed  Google Scholar 

  • Sears, D.W. 1978. Condensation and the composition of iron meteorites. Earth Planet. Sci. Lett. 41, 128–138.

    Article  CAS  Google Scholar 

  • Shock, E.L. and M.D. Schulte 1990a. Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Nature 343, 728–731.

    Article  CAS  PubMed  Google Scholar 

  • Shock, E.L. and M.D. Schulte 1990b. Summary and implications of reported amino acid concentrations in the Murchison meteorite. Geochim. Cosmochim. Acta 54, 3159–3173.

    Article  CAS  PubMed  Google Scholar 

  • Shukolyukov, A. and G.W. Lugmair 1992. First evidence for live 60Fe in the early solar system. Lunar Planet. Sci. XXIII, pp. 1295–1296.

    Google Scholar 

  • Sill, G.T., and L.L. Wilkening 1978. Ice clathrate as a possible source of the atmospheres of the terrestrial planets. Icarus 33, 13–22.

    Article  CAS  Google Scholar 

  • Simonelli, D.P., J.B. Pollack, C.P. McKay, R.T. Reynolds, and A.L. Summers 1989. The carbon budget in the outer solar nebula. Icarus 82, 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Snyder. L.E., P. Palmer, and I. dePater 1989. Radio detection of formaldehyde emission from comet Halley. Astron. J. 97, 246–253.

    Article  CAS  Google Scholar 

  • Stawikowski, A. and J.L. Greenstein 1964. The isotope ratio 12C/13C in a comet. Astrophys. J. 140, 1280–1291.

    Article  CAS  Google Scholar 

  • Stevenson, D.J. 1990. Chemical heterogeneity and imperfect mixing in the solar nebula. Astrophys. J. 348, 730–737.

    Article  CAS  Google Scholar 

  • Stevenson, D.J. and J.I. Lunine 1988. Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula. Icarus 75, 146–155.

    Article  CAS  Google Scholar 

  • Stewart, A.I.F. 1987. Pioneer Venus measurements of H, O, and C production in comet P/Halley near perihelion. Astron. Astrophys. 187, 369–374.

    CAS  Google Scholar 

  • Strom, S.E., S. Edwards, and K.M. Strom 1989. Constraints on the properties and environment of primitive solar nebulae from the astrophysical record provided by young stellar objects. in The Formation and Evolution of Planetary Systems, ed. H.A. Weaver and L. Danly, Cambridge University Press, Cambridge, pp. 91–109.

    Google Scholar 

  • Studier, M.H., R. Hayatsu, and E. Anders 1968. Origin of organic matter in early solar system I. Hydrocarbons. Geochim. Cosmochim. Acta 32 , 151–173.

    Article  CAS  Google Scholar 

  • Suess, H.E. 1947a. Über kosmische Kernhäufigkeiten. I. Mitteilung: Einige Häufigkeitsregeln und ihre Anwendung bei der Abschätzung der Häufigkeitswerte für die mittelschweren und schweren Elemente. Z Naturforsch. 2a, 311–321.

    CAS  Google Scholar 

  • Suess, H.E. 1947b. Über kosmische Kernhäufigkeiten. II. Mitteilung: Einzelheiten in der Häufigkeitsverteilung der mittelschweren und schweren Kerne. Z Naturforsch. 2a, 604–608.

    CAS  Google Scholar 

  • Suess, H.E. 1965. Chemical evidence bearing on the origin of the solar system. Ann. Rev. Astron. Astrophys. 3, 217–234.

    Article  CAS  Google Scholar 

  • Suess, H.E., and H.C. Urey 1956. Abundances of the elements. Rev. Mod. Phys. 28, 53–74.

    Article  CAS  Google Scholar 

  • Tang, M. and E. Anders 1988. Isotopic anomalies of Ne, Xe, and C in meteorites. II. Interstellar diamond and SiC: Carriers of exotic noble gases. Geochim. Cosmochim. Acta 52, 1235–1244.

    Article  Google Scholar 

  • Tegler, S. and S. Wyckoff 1989. NH2 fluorescence efficiencies and the NH3 abundance in comet Halley. Astrophys. J. 343, 445–449.

    Article  CAS  Google Scholar 

  • Thiemens, M.H. 1988. Heterogeneity in the nebula: Evidence from stable isotopes, in Meteorites and the Early Solar System, ed. J.F. Kerridge and M.S. Matthews, University of Arizona Press, Tucson, pp. 899–923.

    Google Scholar 

  • Tielens, A.G.G.M. 1983. Surface chemistry of deuterated molecules. Astron Astrophys. 119, 177–184.

    CAS  Google Scholar 

  • Tielens, A.G.G.M. and L.J. Allamandola 1987. Evolution of interstellar dust. in Physical Processes in Interstellar Clouds, ed. G.E. Morfill and M. Scholer, D. Reidel, Netherlands, pp. 333–376.

    Chapter  Google Scholar 

  • Tomeoka, K. and P.R. Buseck 1985. Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O, and Ni. Geochim. Cosmochim. Acta 49, 2149–2163.

    Article  CAS  Google Scholar 

  • Turkdogan, E.T., W.M. McKewan, and L. Zwell 1965. Rate of oxidation of iron to wüstite in water-hydrogen gas mixtures. J. Phys. Chem. 69, 327–334.

    Article  CAS  Google Scholar 

  • Urey, H.C. 1952. The Planets, New Haven: Yale University Press.

    Google Scholar 

  • Urey, H.C. 1953. Chemical evidence regarding the Earth’s origin. ìn XIIIth International Congress Pure and Applied Chemistry and Plenary Lecture, Almqvist & Wiksells, Stockholm, pp. 188–217.

    Google Scholar 

  • Vannice, M.A. 1975. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals. J. Catal. 37, 449–461.

    Article  CAS  Google Scholar 

  • Vannice, M.A. 1982. Catalytic activation of carbon monoxide on metal surfaces. in Catalysis Science and Technology, vol. 3, eds. J.R. Anderson and M. Boudart, Springer-Verlag, Berlin, pp. 139–198.

    Google Scholar 

  • Vanýsek, V. 1977. Carbon isotope ratio in comets and interstellar medium. in Comets, Asteroids, and Meteorites: Interrelations, Evolution, and Origins, ed. A.H. Delsemme, University of Toledo Press, Toledo, OH, pp. 499–503.

    Google Scholar 

  • Virag, A., B. Wopenka, S. Amari, E. Zinner, E. Anders, and R.S. Lewis 1992. Isotopic, optical, and trace element properties of large single SiC grains from the Murchison meteorite. Geochim. Cosmochim. Acta 56, 1715–1733.

    Article  CAS  Google Scholar 

  • Wai, C.M., and J.T. Wasson 1977. Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett. 36, 1–13.

    Article  CAS  Google Scholar 

  • Wai, C.M., and J.T. Wasson 1979. Nebular condensation of Ga, Ge and Sb and the chemical classification of iron meteorites. Nature 282, 790–793.

    Article  CAS  Google Scholar 

  • Walmsley, C.M., W. Hermsen, C. Henkel, R. Mauersberger, and T.L. Wilson 1987. Deuterated ammonia in the Orion hot core. Astron. Astrophys. 172, 311–315.

    CAS  Google Scholar 

  • Warnatz, J. 1984. Rate coefficients in the C/H/O system. in Combustion Chemistry, ed. W.C. Gardiner, Jr., Springer-Verlag, New York, pp. 197–360.

    Chapter  Google Scholar 

  • Wasserburg, G.J. 1985. Short-lived nuclei in the early solar system, in Protostars and Planets II, eds., D.C Black and M.S. Matthews, University of Arizona Press, Tucson, pp. 703–754.

    Google Scholar 

  • Wasson, J.T. 1985. Meteorites. New York: W.H. Freeman and Co.

    Google Scholar 

  • Weaver, H.A. 1989. The volatile composition of comets. in Highlights of Astronomy 8, 387–393.

    Article  Google Scholar 

  • Weaver, H.A., M.J. Mumma, and H.P. Larson 1991. Infrared spectroscopy of cometary parent molecules. in Comets in the Post-Halley Era, ed. R. Newburn and J. Rahe, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Whipple, F.L. 1966. Chondrules: Suggestions concerning their origin. Science 153, 54–56.

    Article  CAS  PubMed  Google Scholar 

  • Wood, J.A., and G.E. Morfill 1988. A review of solar nebula models. in Meteorites and the Early Solar System, ed. J.F. Kerridge and M.S. Matthews, University of Arizona Press, Tucson, pp. 329–347.

    Google Scholar 

  • Woods, T.N., P.D. Feldman, K.F. Dymond, and D.J. Sahnow 1986. Rocket ultraviolet spectroscopy of comet Halley and abundance of carbon monoxide and carbon. Nature 324, 436–438.

    Article  CAS  Google Scholar 

  • Woolum, D.S. 1988. Solar-system abundances and processes of nucleosynthesis, in Meteorites and the Early Solar System, ed. J.F. Kerridge and M.S. Matthews, University of Arizona Press, Tucson, pp. 995–1020.

    Google Scholar 

  • Wootten, A. 1987. Deuterated molecules in interstellar clouds. in Astrochemistry, eds. M.S. Vardya and S.P. Tarafdar, D. Reidel, Dordrecht, Netherlands, pp. 311–320.

    Chapter  Google Scholar 

  • Worrell, W.L. and E.T. Turkdogan 1968. Iron-sulfur system, Part II: Rate of reaction of hydrogen sulfide with ferrous sulfide. Trans. AIME 242, 1673–1678.

    CAS  Google Scholar 

  • Wyckoff, S., E. Lindholm, P.A. Wehinger, B.A. Peterson, J.M. Zucconi, and M.C. Festou 1989. The 12C/13C abundance ratio in comet Halley. Astrophys. J. 339, 488–500.

    Article  CAS  Google Scholar 

  • Wyckoff, S. and J. Theobald 1989. Molecular ions in comets. Adv. Space Res. 9(3), 157–161.

    Article  CAS  Google Scholar 

  • Wyckoff, S., S. Tegler, and L. Engel 1989. Ammonia abundances in comets. Adv. Space Res. 9(3), 169–176.

    Article  CAS  Google Scholar 

  • Wyckoff, S., S. Tegler, and L. Engel 1991a. Ammonia abundances in four comets. Astrophys. J. 368, 279–286.

    Article  CAS  Google Scholar 

  • Wyckoff, S., S. Tegler, and L. Engel 1991b. Nitrogen abundance in comet Halley. Astrophys. J. 367, 641–648.

    Article  Google Scholar 

  • Wyckoff, S., S. Tegler, P.A. Wehinger, H. Spinrad, and M.J.S. Belton 1988. Abundances in comet Halley at the time of the spacecraft encounters. Astrophys. J. 325, 927–938.

    Article  CAS  Google Scholar 

  • Yang, J. and S. Epstein 1983. Interstellar organic matter in meteorites. Geochim. Cosmochim. Acta 47, 2199–2216.

    Article  CAS  Google Scholar 

  • Yung, Y.L., R.R. Friedl, J.P. Pinto, K.D. Bayes, and J.S. Wen 1988. Kinetic isotopic fractionation and the origin of HDO and CH3D in the solar system. Icarus 74, 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Zinner, E. 1988. Interstellar cloud material in meteorites. in Meteorites and the Early Solar System, ed. J.F. Kerridge and M.S. Matthews, University of Arizona Press, Tucson, pp. 956–983.

    Google Scholar 

  • Zinner, E., M. Tang, and E. Anders 1987. Large isotopic anomalies of Si, C, N, and noble gases in interstellar silicon carbide from the Murray meteorite. Nature 330, 730–732.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fegley, B. (1993). Chemistry of the Solar Nebula. In: Greenberg, J.M., Mendoza-Gómez, C.X., Pirronello, V. (eds) The Chemistry of Life’s Origins. NATO ASI Series, vol 416. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1936-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1936-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4856-9

  • Online ISBN: 978-94-011-1936-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics