Skip to main content

Fundamentals of Giaever and Josephson Tunneling

  • Chapter
The New Superconducting Electronics

Part of the book series: NATO ASI Series ((NSSE,volume 251))

Abstract

The concept of quantum-mechanical tunneling of a particle through a potential barrier has been applied successfully to explain various phenomena occurring in physics and chemistry. We introduce two very recent and exciting applications of electron tunneling: the scanning tunneling microscope (STM) and single-electron effects in very small junctions. Next, we focus on the tunneling of electrons between superconducting electrodes separated by a potential barrier. The current-voltage characteristics of hysteretic (superconductor-oxide-superconductor) as well as non-hysteretic junctions (weak links between two superconductors) are discussed in detail. The importance of Giaever (quasiparticle) tunneling and Josephson (Cooper pair) tunneling is clearly emphasized. After deriving the fundamental relations for the dc and ac Josephson effect, we consider the pronounced influence of a magnetic field. For a loop containing two Josephson junctions in parallel, the magnetic flux quantization gives rise to the dc SQUID (Superconducting QUantum Interference Device) effect, which can now be observed for weak links in thin films of high-T c material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gamov, G. (1928) Quantum theory of the atomic nucleus, Z. Phys. 51, 204.

    Article  Google Scholar 

  2. Fowler, R.H. and Nordheim, L. (1928) Electron emission in intense electric fields, Proc. Roy. Soc. A 119, 173.

    Article  MATH  Google Scholar 

  3. Oppenheimer, J.R. (1928) Three notes on the quantum theory of aperiodic effects, Phys. Rev. 31, 66.

    Article  MATH  Google Scholar 

  4. Hänggi, P. and Grabert, H. (1987) Finite temperature tunneling in reaction theory, Europhysics News 18, 71.

    Google Scholar 

  5. For a survey of modern trends in tunneling, we refer to: (1986) in J. Jortner and B. Pullman (eds.), Tunneling, Reidel, Boston.

    Google Scholar 

  6. Clarke, J. and Schön, G. (1986) Macroscopic quantum phenomena in Josephson elements, Europhysics News 17, 94.

    Google Scholar 

  7. For recent reviews, see the articles in: (1986) Physics Today 39 (3), 22.

    Google Scholar 

  8. Goldanskii, V.I. (1986) Quantum chemical reactions in the deep cold, Scientific American 254 (2), 38.

    Article  Google Scholar 

  9. Sommerfeld, J.A. and Bethe, H. (1933) in S. Flügge (ed.), Handbuch der Physik 24 (2), Springer-Verlag, Berlin, p. 450.

    Google Scholar 

  10. Frenkel, J. (1930) On the electrical resistance of contacts between solid conductors, Phys. Rev. 36, 1604.

    Article  Google Scholar 

  11. Zener, C. (1934) A theory of the electrical breakdown of solid dielectrics, Proc. Roy. Soc. A 145, 523.

    Article  Google Scholar 

  12. Esaki, L. (1957) New phenomena in narrow germanium p-n junctions, Phys. Rev. 109, 603.

    Article  Google Scholar 

  13. Harrison, W.A. Tunneling from an independent-particle point of view, Phys. Rev. 123, 85.

    Google Scholar 

  14. Gijs, M. and Bruynseraede, Y. (1986) Influence of electron-electron interactions on the density-of-states of two-dimensional Pd films, Solid State Commun 57, 141

    Article  Google Scholar 

  15. Solymar, L. (1972) Superconductive Tunneling and Applications, Chapman and Hall Ltd, London.

    Google Scholar 

  16. Barone, A. and Paterno, G. (1982) Physics and Applications of the Josephson Effect, John Wiley & Sons, New York.

    Book  Google Scholar 

  17. Giaever, I. (1960) Energy gap in superconductors measured by electron tunneling, Phys. Rev. Lett. 5, 147.

    Article  Google Scholar 

  18. Nicol, J., Shapiro, S., and Smith, P.H. (1960) Direct measurements of the superconducting energy gap, Phys. Rev. Lett. 5, 461.

    Article  Google Scholar 

  19. Josephson, B.D. (1962) Possible new effects in superconducting tunneling, Phys. Lett. 1, 251.

    Article  MATH  Google Scholar 

  20. Anderson, P.W. and Rowell, J.M. (1963) Possible observation of the Josephson superconducting tunneling effect, Phys. Rev. Lett. 10, 230.

    Article  Google Scholar 

  21. Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E. (1982) Surface studies by scanning tunneling microscopy Phys. Rev. Lett. 49, 57.

    Article  Google Scholar 

  22. Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E. (1983) 7 x 7 reconstruction on Si(111) resolved in real space, Phys. Rev. Lett. 50, 120.

    Article  Google Scholar 

  23. Heyvaert, I., Osquiguil, E., Haesendonck, C. Van, and Bruynseraede, Y. (1992) Etching of screw dislocations in YBa 2 Cu 3 O 7 films with a scanning tunneling microscope, Appl. Phys. Lett. 61, 111.

    Article  Google Scholar 

  24. Likharev, K.K. and Claeson, T. (1992) Single electronics, Scientific American 266 (6), 50.

    Google Scholar 

  25. Schönenberger, C., Houten, H. van, and Donkersloot, H.C. (1992) Single-electron tunneling observed at room temperature by scanning tunneling microscopy, Europhys. Lett. 20, 249.

    Article  Google Scholar 

  26. Fulton, T.A. and Dolan, G.J. (1987) Observation of single-electron charging effects in small tunnel junctions, Phys. Rev. Lett. 59, 109.

    Article  Google Scholar 

  27. Geerligs, L.J., Anderegg, V.F., Holweg, P.A.M., Mooij, J.E., Pothier, H., Esteve, D., Urbina, C., and Devoret, M.H. (1990) Frequency-locked turnstile device for single electrons, Phys. Rev. Lett. 64, 2691.

    Article  Google Scholar 

  28. Knorr, K. and Leslie, J.D. (1973) Ellipsometrical determination of barrier thicknesses of metal-insulator-metal tunnel junctions, Solid State Commun. 12, 615.

    Article  Google Scholar 

  29. Walmsley, D.G., Floyd, R.B., and Timms, W.E. (1977) Conductance of clean and doped tunnel junctions, Solid State Commun. 22, 497.

    Article  Google Scholar 

  30. Giaever, I., Hart, H.R., and Megerle, K. (1962) Tunneling into superconductors at temperatures below 1 K, Phys. Rev. 126, 941.

    Article  Google Scholar 

  31. Shapiro, S., Smith, P.H., Miles, J.L., and Strong, P.F. (1962) Superconductivity and electron tunneling, IBM J. Res. Develop. 6, 34.

    Google Scholar 

  32. Taylor, B.N. (1968) Device applications of superconductive tunneling, J. Appl. Phys. 39, 2490.

    Article  Google Scholar 

  33. Aminov, B.A., Bush, A.A., Kaul, A.R., Leonyuk, L.I., Oskina, T.E., Sudakova, M.V., Pedyash, M.V., Petrov, D.K., Ponomarev, Ya.G., Rakhimov, H.T., Sethupathi, K. (1992 preprint) Tunneling characteristics of break junctions in Bi-SrCa-Cu-O (fine structure, proximity effect), to be published.

    Google Scholar 

  34. Josephson, B.D. (1964) Coupled superconductors, Rev. Mod. Phys. 36, 216.

    Article  Google Scholar 

  35. Feynman, R.P., Leighton, R.B., and Sands, M. (1966) The Feynman Lectures on Physics (Vol. 3), Addison Wesley, New York, chap. 21.

    Google Scholar 

  36. Dries, L. Van den (1981) Experimental study of the superconducting proximity effect: critical temperature, density of states, Josephson effect, Ph.D. Thesis, Katholieke Universiteit Leuven.

    Google Scholar 

  37. Shapiro, S. (1963) Josephson effects in superconducting tunneling; the effect of microwaves and other observations, Phys. Rev. Lett. 11, 80.

    Article  Google Scholar 

  38. Finnegan, T.F., Denenstein, A., and Langenberg, D.N. (1971) ac Josephson-effect determination of e/h: a standard of electrochemical potential based on macroscopic quantum phase coherence in superconductors, Phys. Rev. B 4, 1487.

    Article  Google Scholar 

  39. Taylor, B.N., Parker, W.H., and Langenberg, D.N. (1969) Determination of e/h, using macroscopic quantum phase coherence in superconductors: implications for quantum electrodynamics and the fundamental physical constants, Rev. Mod. Phys. 41, 375.

    Article  Google Scholar 

  40. Grimes, C.C. and Shapiro, S. (1968) Millimeter-wave mixing with Josephson junctions, Phys. Rev. 169, 397.

    Article  Google Scholar 

  41. Kleiner, R., Steinmeyer, F., Kunkel, G., and Müller, P. (1992) Intrinsic Joseph son effects in Bi 2 Sr 2 CaCu 2 O 8 single crystals, Phys. Rev. Lett. 68, 2394.

    Article  Google Scholar 

  42. Laibowitz, R.B., Koch, R.H., Gupta A., Koren, G., Gallagher, W.J., Foglietti, V., Oh, B., and Viggiano, J.M. (1990) All high Tc edge junctions and SQUIDs, Appl. Phys. Lett. 56, 686.

    Article  Google Scholar 

  43. Gross, R., Chaudhari, P., Kawasaki, M., Ketchen, M.B., and Gupta, A. (1990) Low noise YBa2Cu3O7-δ grain boundary junction dc SQUIDs, Appl. Phys. Lett. 57, 727.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bruynseraede, Y., Vlekken, C., Van Haesendonck, C., Moshchalkov, V.V. (1993). Fundamentals of Giaever and Josephson Tunneling. In: Weinstock, H., Ralston, R.W. (eds) The New Superconducting Electronics. NATO ASI Series, vol 251. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1918-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1918-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4848-4

  • Online ISBN: 978-94-011-1918-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics