Skip to main content

Is There a Future for Lithium-Batteries as High Energy Density Source in Electrical Engine Vehicles ? Some Recent Trends

  • Chapter
Fast Ion Transport in Solids

Part of the book series: NATO ASI Series ((NSSE,volume 250))

  • 566 Accesses

Abstract

Thanks to low weight and a bonding energy with oxygen exceeding that of sodium lithium rechargeable batteries should be the most realistic solution for electrically driven vehicles with a total capacity which can be four times that of the best so far known nickel-cadmium cells and the advantage of possible room temperature utilization. Lithium is also much safer as competing sodium in the eventuality of a crash.

The new batteries are based on “rocking chair” reactions involving at discharge diffusion from a lithium rich negative electrode through a flexible but stable electrolyte into a host structure playing the role of the positive electrode. The double intercalation process must be reversible on many cycles without significant capacity loses.

Lithium metal has been considered for a long time as the best anode material, but sensitivity to moisture and strong anodic volume shrinking at discharge represent serious drawbacks. Use of lithium intercalated “carbon blacks” is a seducing alternative as far appropriate materials selection could allow to exceed the present insertion limitation (∼ Li0.7C6) but with a wide composition range.

The choice of the positive electrode must meet several requirements : reversibility over a broad intercalation range, high electrochemical chain potential excluding indeed intermediate electrolyte oxidation (EMF below ∼ 4 v), absence of ageing harm. A few attractive solutions have been considered here : a new lithium-rich LixV205 phase, 2D-LixNi1-yCoy02 oxides. The physical behavior of these materials has been discussed as well as practical utilization in rechargeable batteries for electrical vehicles.

It appears that there will be no industrial achievement in the near future without imaginative and comprehensive fundamental research related to the user’s requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Armand in “Materials for Advanced Batteries”. D.W. Murphy, J. Broodhead and B.C.H. Steele Eds, Plenum Press, New York 145, (1980).

    Chapter  Google Scholar 

  2. M. Lazzari and B. Scrosati, J. Electrochem. Soc. , 127, 773 (1980).

    Article  CAS  Google Scholar 

  3. B. Di Pietro, M. Patriarca and B. Scrosati, J. Power Sources, 8, 289 (1982).

    Article  Google Scholar 

  4. T. Nagaura and K. Tazawa, Prog Batteries Sol. Cells, 9, 20 (1990).

    Google Scholar 

  5. J.R. Dahn, U. von Sacken, M.R. Jukow and H. Al-Janaby, J. Electrochem. Soc, 137, 2207 (1991).

    Article  Google Scholar 

  6. J.M. Tarascon and D. Guyomard, J. Electrochem. Soc, 138, 2864 (1991).

    Article  CAS  Google Scholar 

  7. D. Guyomard and J.M. Tarascon, Proc. Symp. on Lithium Batteries, W.D.K. Clark and G. Halpert Eds, The Electrochem. Soc, Pennington, 113(1992).

    Google Scholar 

  8. C. Delmas and I. Saadoune, Solid State Ionics (in press) (1992).

    Google Scholar 

  9. C. Delmas, S. Brèthes and M. Ménetrier, J. Power Sources, 34, 113 (1992).

    Article  Google Scholar 

  10. M.G.S.R. Thomas, W.I.F. David and J.B. Goodenough, Mat. Res. Bull, 20, 1137(1985).

    Article  CAS  Google Scholar 

  11. J.B. Goodenough, D.G. Wickham and W.J. Croft, J. Phys. Chem. Solids, 5, 107 (1958).

    Article  CAS  Google Scholar 

  12. I. Saadoune, A. Rougier and C. Delmas (to be published).

    Google Scholar 

  13. C. Delmas in Chemical Physics of Intercalation 2D→3D, A.R. Legrand and S. Flandrois Eds, Nato ASI Series, 172, 207 (1987).

    Google Scholar 

  14. L.A. de Picciotto and M. Thackeray, Mat. Res. Bull., 19, 1497 (1984).

    Article  Google Scholar 

  15. K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough, Mat. Res. Bull., 15, 783 (1980).

    Article  CAS  Google Scholar 

  16. M. Broussely, P. Perton, J.L. Labat; R.J. Staniewicz and A. Romero, J. Power Sources (in press).

    Google Scholar 

  17. J.M. Cocciantelli, M. Ménétrier, C. Delmas, J.P. Doumerc, M. Pouchard and P. Hagenmuller, Solid State Ionics, 50, 99 (1992).

    Article  CAS  Google Scholar 

  18. H. Auradou, E. Fargin and C. Delmas (to be published).

    Google Scholar 

  19. J. Galy et A. Hardy, Bull. Soc. Chim. France 2802 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Kluwer Academic Publishers

About this chapter

Cite this chapter

Delmas, C., Saadoune, I., Auradou, H., Menetrier, M., Hagenmuller, P. (1993). Is There a Future for Lithium-Batteries as High Energy Density Source in Electrical Engine Vehicles ? Some Recent Trends. In: Scrosati, B., Magistris, A., Mari, C.M., Mariotto, G. (eds) Fast Ion Transport in Solids. NATO ASI Series, vol 250. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1916-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1916-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4847-7

  • Online ISBN: 978-94-011-1916-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics