Skip to main content

Towards Fully Quantized Optoelectronic Semiconductor Heterostructures: Quantum Boxes or Quantum Microcavities?

  • Chapter
  • 153 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 248))

Abstract

It has been predicted that sharp and strong interband photoluminescence (PL) lines should be obtained in quantum box structures, allowing excellent laser performance. We explain however the usually observed decrease in interband PL efficiency with full three-dimensional quantum box quantization by the unavoidable energy relaxation bottleneck which develops in a fully quantized system. This bottleneck is conversely shown to be extremely useful in enhancing the performances of those devices based on intersubband transitions. An independent scheme can however be used to yield narrow interband PL lines (sharper than kT) through the photon quantization occuring in quantum microcavities, which selects the recombining electron-hole pair or exciton thanks to energy and momentum conservation. At exact resonance between cavity photons and excitons a normal-mode splitting appears, which can also be viewed as the vacuum-field induced Rabi splitting of the exciton.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a general background, see, for example, C. Weisbuch and Borge Vinter, Quantum Semiconductor Devices (Academic, Boston, 1991).

    Google Scholar 

  2. See, for example, the contributions by A. Plaut, D. Heitmann, G. Abstreiter, and J. Kotthaus, in these proceedings.

    Google Scholar 

  3. H. Benisty, C.M. Sotomayor-Torres and C. Weisbuch, Phys. Rev. B 44, 10495 (1991).

    Article  Google Scholar 

  4. H. Benisty and C. Weisbuch, to be published.

    Google Scholar 

  5. E.M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  6. S. Haroche and D. Kleppner, Physics Today 42, 24 (January 1989).

    Article  ADS  Google Scholar 

  7. Y. Zhu, D.J. Gauthier, S.E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990).

    Article  ADS  Google Scholar 

  8. R.J. Thompson, G. Rempe, and H.J. Kimble, Phys. Rev. Lett. 68, 1132, (1992).

    Article  ADS  Google Scholar 

  9. For recent excellent reviews, see, for example, S. Haroche, in Fundamental Systems in Quantum Optics, edited by J. Dalibard, J.M. Raimond, and J. Zinn-Justin (Elsevier, Amsterdam, 1991); E.A. Hinds, in Advances in Atomic and Molecular Physics Vol. 20, edited by D. Bates and B. Bederson (Academic, Boston, 1991), p. 237.

    Google Scholar 

  10. M. Brune, S. Haroche, J.M. Raimond, L. Davidovich, and N. Zagwry, Phys. Rev. A 45, 5193 (1992).

    Article  ADS  Google Scholar 

  11. Y. Yamanoto, S. Machida, K. Igeta, and H. Horikoshi, in Coherence and Quantum Optics VI, edited by L. Mandel, E. Wolf, and J.H. Eberly (Plenum, New York, 1990), p. 1249.

    Chapter  Google Scholar 

  12. See, for example, S. John, Physics Today 45, 32 (May 1991).

    Article  Google Scholar 

  13. U. Böckelmann and G. Bastard, Phys. Rev. B 42, 8947 (1990).

    Article  ADS  Google Scholar 

  14. J. Stark, W.H. Knox, and D.S. Chemla, Phys. Rev. Lett. 68, 3080 (1992); D.S. Chemla, in these proceedings.

    Article  ADS  Google Scholar 

  15. See, for example, E.M. Clausen, H.G. Craighead, J.M. Worlock, J.P. Harbison, L.M. Schiavone, L. Florez, and B. Van der Gaag, Appl. Phys. Lett. 55, 1427 (1989); B.E. Maile, A. Forchel, R. Germann, D. Grützmacher, H.P. Meier, and J.P. Reithmaier, J. Vac. Sci. Technol. B7, 20301 (1989) and references therein.

    Article  ADS  Google Scholar 

  16. M.A. Reed, R.T. Bate, K. Bradshow, W.M. Duncan, W.R. Rensley, J.W. Lee, and H.D. Shih, J. Vac. Sci. Technol. B 4, 358 (1986); J.N. Patillon, R. Gamonal, M. Iost, J.P. André, B. Soucail, C. Delalande, and M. Voos, J. Appl. Phys. 68, 3789 (1980); G. Abstreiter, in these proceedings.

    Article  ADS  Google Scholar 

  17. G. Mayer, H. Leier, B.E. Maile, A. Forchel, H. Schweizer, G. Weimann, and W. Schlapp, in Proc. 20th Int. Conf. on the Physics of Semiconductors, edited by E.M. Anastassakis and J.D. Joannopoulos (World Scientific, Singapore, 1990), p. 2415.

    Google Scholar 

  18. See these proceedings.

    Google Scholar 

  19. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982); M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. QE-22, 1915 (1986); Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, IEEE J. Quantum Electron. QE-25, 2001 (1989).

    Article  ADS  Google Scholar 

  20. For a general and recent reference, see E. Rosencher, B. Levine, and B. Vinter, Intersubband Transitions in Quantum Wells, (Plenum, New York, 1992).

    Book  Google Scholar 

  21. M.A. Kinch and A. Yariv, Appl. Phys. Lett. 55, 2093 (1989).

    Article  ADS  Google Scholar 

  22. See, for example, A. Kastalsky, V.J. Goldman, and J.H. Abeles, Appl. Phys. Lett. 59, 2636 (1991) and references therein.

    Article  ADS  Google Scholar 

  23. Y. Yamamoto, S. Machida, K. Igeta, and G. Björk, in Coherence, Amplification and Quantum Effects in Semiconductor Lasers, edited by Y. Yamanoto (Wiley, New York, 1991), p. 561; G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1992).

    Google Scholar 

  24. H. Yokohama, Science 256, 66 (1992).

    Article  ADS  Google Scholar 

  25. T. Baba, S. Hamano, F. Koyama, and K. Iga, IEEE J. Quantum Electron. QE-27, 1347 (1991).

    Article  ADS  Google Scholar 

  26. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).

    Article  ADS  Google Scholar 

  27. D.A.B. Miller and D.S. Chemla, J. Opt. Soc. Am. B 2, 1155 (1985).

    Article  ADS  Google Scholar 

  28. See, for example, M. Born and E. Wolf, Principles of Optics, 6th Ed. (Pergamon, Oxford, 1986).

    Google Scholar 

  29. L. Andreani and A. Pasquarello, Phys. Rev. B 42, 8928 (1990).

    Article  ADS  Google Scholar 

  30. See, for example, J. Jewell, J.P. Harbison, A. Scherer, Y.H. Lee, and L.T. Florez, IEEE J. Quantum Electron. QE-27, 1332 (1991) and references therein.

    Article  ADS  Google Scholar 

  31. G.D. Boyd and G. Livescu, Optics and Quantum Electronics 24, 147 (1992); M. Whitehead, G. Parry, and P. Wheatley, Physica Scripta T 35, 210 (1991).

    Article  Google Scholar 

  32. N. Peyghambarian and S.W. Koch, in Non-Linear Photonics, edited by H.M. Gibbs (Springer, Berlin, 1990), p. 7.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weisbuch, C. (1993). Towards Fully Quantized Optoelectronic Semiconductor Heterostructures: Quantum Boxes or Quantum Microcavities?. In: Lockwood, D.J., Pinczuk, A. (eds) Optical Phenomena in Semiconductor Structures of Reduced Dimensions. NATO ASI Series, vol 248. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1912-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1912-2_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4845-3

  • Online ISBN: 978-94-011-1912-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics