Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 248))

  • 161 Accesses

Abstract

Radiative properties of free excitons in GaAs quantum wells are studied under resonant excitation. We first show that we do observe free excitons by their Lorentzian lineshape and their mobility in the plane of the well. Enhanced radiative recombination of the excitons, a consequence of the breakdown of the translational symmetry induced by the quantum well potential, is evidenced by the very short lifetime as well as by the strong intensity of the luminescence signal. Dephasing mechanisms, by transferring the excitons into non-radiative states, increase the observed lifetime. In the same way, the increase of the sample temperature, or of the exciton temperature by non-resonant excitation, increases the radiative decay time by reducing the exciton population close to k = 0. From our experiments, we deduce a radiative lifetime of 10 ± 4 ps in the absence of dephasing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Elliott, Phys. Rev. 108, 1384 (1957).

    Article  ADS  Google Scholar 

  2. See, for example, D.S. Chemla, D.A.B. Miller, P.W. Smith, A.C. Gossard, and W. Wiegmann, IEEE J. Quantum Electron. QE20, 265 (1984).

    Article  ADS  Google Scholar 

  3. W. Knox, R.L. Forte, M.C. Downer, D.A.B. Miller, D.S. Chemla, and C.V. Shank, Phys. Rev. Lett. 54, 1306 (1985); D.S. Chemla and D.A.B. Miller, J. Opt. Soc. Am. B 2, 1155 (1985).

    Article  ADS  Google Scholar 

  4. For a review, see, for example, S. Schmitt Rink, D.S. Chemla, and D.A.B. Miller, Advances in Physics 38, 89 (1989).

    Article  ADS  Google Scholar 

  5. G. Bastard, E.E. Mendez, L.L. Chang, and L. Esaki, Phys. Rev. B 26, 1974 (1982).

    Article  ADS  Google Scholar 

  6. D.S. Chemla, Helv. Phys. Acta 56, 607 (1983).

    Google Scholar 

  7. C. Weisbuch, in Semiconductors and Semimetals, edited by R. Dingle (Academic Press, New York, 1987), p. 1.

    Google Scholar 

  8. C. Weisbuch, R.C. Miller, R. Dingle, A.C. Gossard, and W. Wiegmann, Solid State Commun. 37,29 (1981).

    Article  Google Scholar 

  9. E.O. Göbel, H. Jung, J. Kühl, and K. Ploog, Phys. Rev, Lett. 51, 1588 (1983).

    Article  ADS  Google Scholar 

  10. R.C. Miller and D.A. Kleinmann, J. Lumin. 30, 512 (1985).

    Article  Google Scholar 

  11. J. Lee, E.S. Koteles, and M.O. Vasell, Phys. Rev. B 33, 512 (1986).

    Google Scholar 

  12. R. Del Sole, A. D’Andrea, and A. Lapiccirella, Excitons in Confined Systems (Springer-Verlag, Berlin, 1988).

    Book  Google Scholar 

  13. J.J. Hopfield, Phys. Rev. 112, 1555 (1958).

    Article  ADS  MATH  Google Scholar 

  14. Y. Toyozawa, Suppl. Prog. Theor. Phys. 12, 111 (1959).

    Article  ADS  Google Scholar 

  15. C. Weisbuch and R.G. Ulbrich, Phys. Rev. Lett. 39, 654 (1977).

    Article  ADS  Google Scholar 

  16. See, for example, W.J. Rappel, L.F. Feiner, and M.F.H. Schuurmans in Ref. [12].

    Google Scholar 

  17. G.W. t’Hooft, W.AJ.A. van der Poel, L.W. Molenkamp, and C.T. Foxon, Phys. Rev. B 35, 8281 (1987).

    Article  ADS  Google Scholar 

  18. Ya. Aaviksoo, J. Lumin. 48 & 49, 57 (1991).

    Article  Google Scholar 

  19. Ya. Aaviksoo, Ya. Lippmaa, and T. Reinot, Opt. Spectrosc. (USSR) 62, 419 (1987).

    ADS  Google Scholar 

  20. V.M. Agranovitch and O.A. Dubovskii, JETP Lett. 3, 223 (1966).

    Google Scholar 

  21. M. Orrit, C. Aslangul, and P. Kottis, Phys. Rev. B 25, 7263 (1982).

    Article  ADS  Google Scholar 

  22. E. Hanamura, Phys. Rev. B 38, 1228 (1988).

    Article  ADS  Google Scholar 

  23. L.C. Andreani, F. Tassone, and F. Bassani, Solid State Commun. 77, 641 (1990).

    Article  Google Scholar 

  24. J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C.T. Foxon, and R.J. Elliott, Phys. Rev. Lett. 59, 2337 (1987).

    Article  ADS  Google Scholar 

  25. See, for example, A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu, Phys. Rev. 40, 6442 (1989).

    Article  ADS  Google Scholar 

  26. C. Weisbuch, R.C. Miller, R. Dingle, A.C. Gossard, and W. Wiegmann, Solid State Commun. 37, 219 (1981).

    Article  ADS  Google Scholar 

  27. C. Weisbuch, R. Dingle, A.C. Gossard, and W. Wiegmann, Solid State Commun. 387, 709 (1981).

    Article  Google Scholar 

  28. B. Deveaud, J.Y. Emergy, A. Chomette, B. Lambert, and M. Baudet, Appl. Phys. Lett. 45, 1078 (1984).

    Article  ADS  Google Scholar 

  29. H. Sakaki, M. Tanaka, and J. Yoshino, Jpn. J. Appl. Phys. 24, L417 (1985).

    Article  ADS  Google Scholar 

  30. A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu, Phys. Rev. B 40, 6422 (1989).

    Article  ADS  Google Scholar 

  31. B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D.S. Katzer, Phys. Rev. Lett. 67, 2355 (1991).

    Article  ADS  Google Scholar 

  32. D. Gammon, B.V. Shanabrook, and D.S. Katzer, Appl. Phys. Lett. 56, 2710 (1990).

    Article  ADS  Google Scholar 

  33. B. Sermage, B. Deveaud, F. Clérot, C. Dumas, and D.S. Katzer, J. Non-Linear Optics, to be published.

    Google Scholar 

  34. It is important to remember, as far as resonant experiments are concerned, that care is taken, during sample preparation and cooling, to ensure the surface cleanliness so that diffraction from the laser beam is reduced to a very low value. In the best conditions, this diffracted signal is much weaker than the luminescence signal. All spectra reported in this paper correspond to such a weak diffraction limit.

    Google Scholar 

  35. M. Colloci, M. Gurioli, A. Vinattieri, F. Fermi, C. Deparis, J. Massies, and G. Neu, Europhys. Lett. 12, 417 (1990).

    Article  ADS  Google Scholar 

  36. B. Deveaud, J. Shah, T.C. Damen, and C.W. Tu, Appl. Phys. Lett. 51, 828 (1987).

    Article  ADS  Google Scholar 

  37. J. Hegarty, M.D. Sturge, C. Weisbuch, A.C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 49, 930(1982)

    Google Scholar 

  38. J.I. Kusano, Y. Segawa, Y. Aoyagi, S. Namba, and H. Okamoto, Phys. Rev. B 40, 1685 (1989).

    Article  ADS  Google Scholar 

  39. T.C. Damen, J. Shah, D.Y. Oberli, D.S. Chemla, J.E. Cunningham, and J.M. Kuo, Phys. Rev. B 42, 7434 (1990).

    Article  ADS  Google Scholar 

  40. M. Zachau, J.A. Kash, and W.T. Masselink, in Quantum Optoelectronics, Salt Lake City, March 1991 (Optical Society of America, Washington, 1991), Tech. Digest Series Vol. 7, p. 206.

    Google Scholar 

  41. D. Oberhauser, H. Kalt, W. Schlapp, H. Nickel, and C. Klingshim,J. Lumin. 48 & 49, 717 (1991).

    Article  Google Scholar 

  42. E.I. Rashba and G.E. Gurgenishvili, Sov. Phys. Semicond. 4, 759 (1962).

    Article  Google Scholar 

  43. R. Eccleston, R. Strobel, W.W. Rühle, J. Kuhl, B.F. Feuerbach, and K. Ploog, Phys. Rev. B 44, 1395 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Deveaud, B., Clérot, F., Sermage, B., Dumas, C., Katzer, D. (1993). Free Exciton Radiative Recombination in GaAs Quantum Wells. In: Lockwood, D.J., Pinczuk, A. (eds) Optical Phenomena in Semiconductor Structures of Reduced Dimensions. NATO ASI Series, vol 248. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1912-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1912-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4845-3

  • Online ISBN: 978-94-011-1912-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics