Skip to main content

Semipositone problems

  • Chapter

Abstract

By a semipositone problem we mean a semilinear equation where the nonlinearity is nondecreasing and negative at the origin. A typical example is the Dirichlet problem

$$\Delta u + \lambda f\left( u \right) = 0{\text{ in }}\Omega ,{\text{ }}u = 0{\text{ on }}\partial \Omega$$
(1.1)

whereλ ∈ (0,∞) is a parameter, Ω is a smooth bounded region in ℝn, Δ is the Laplacian operator and f: ℝ → ℝ is a locally Lipschitzian monotonically increasing function such that

$$ f\left( 0 \right) < 0 $$
(1.2)

and f(σ)> 0 for some σ >0. Semipositone problems naturally arise in various studies.

Supported in part by NSF Grant DMS - 8905936

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. R. Myerscough, B. F. Gray, W. L. Hogarth, and J. Norbury, An analysis of an ordinary differential equations model for a two species predator-prey system with harvesting and stocking, J. Math. Biol. 30 (1992), 389–411.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Smoller and A. Wasserman. Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Rational Mech. Anal. 98 (3) (1987), 229–249.

    MathSciNet  MATH  Google Scholar 

  3. H. Amman, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709.

    Article  MathSciNet  Google Scholar 

  4. T. W. Laetch. The number of solutions of a nonlinear two point boundary value problem Indiana Univ. Math. J(20) (1970/71). 1–13.

    Article  Google Scholar 

  5. H. B. Heller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation. J. Math. Mech. 16 (1976). 1361–1376.

    Google Scholar 

  6. K. J. Brown. M.M.A. Ibrahim, and R. Shivaji, S-shaped bifuracation curves. J. Nonlinear analysis. TMA 5 (5) (1981). 475–486.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Castro and R. Shivaji, Nonnegative solutions for a class of nonpositone problems. Proc. Roy. Soc. Edin. 108 (A) (1988), 291–302.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Miciano and R. Shivaji, Multiple positive solutions for a class of semipositone Neumann two point boundary value problems,J. Math. Anal. Appl. (to appear).

    Google Scholar 

  9. V. Anuradha and R. Shivaji, Nonnegative solutions for a class of superlinear multiparameter semipositone problems Preprint.

    Google Scholar 

  10. A. Khamayseh and R. Shivaji. Evolution of bifurcation curves for semipositone problems when nonlinearities develop multiple zeroes,J. Appt Math. and Comp. (to appear).

    Google Scholar 

  11. A. Castro and R. Shivaji, Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric. Comm. in PDE 14 (8&9) (1989), 1091–1100.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Gidas, W. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principles. Comm. Math. Phys. 68 (1979), 209–243.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Castro and R. Shivaji, Nonnegative solutions for a class of radially symmetric nonpositone problems, Proc. Amer. Math. Soc. 106 (3) (1989), 735–740.

    MathSciNet  MATH  Google Scholar 

  14. K. J. Brown, A. Castro, and R. Shivaji, Nonexistence of radially symmetric nonnegative solutions for a class of semipositone problems, J. Diff. & Int. Eqn. 2 (4) (1989), 541–545.

    MathSciNet  MATH  Google Scholar 

  15. A. Castro, S. Gadam, and R. Shivaji, Branches of radial solutions for semipositone problems Preprint.

    Google Scholar 

  16. A. Castro and S. Gadam, Nonexistence of bounded branches and uniqueness of positive solutions in semipositone problems Preprint.

    Google Scholar 

  17. I. Ali, A. Castro, and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball Proc. Amer. Math. Soc. (to appear).

    Google Scholar 

  18. A. Castro and S. Gadam, Uniqueness of stable and unstable positive solutions for semipositone problems J. Nonlinear Analysis, TMA (to appear).

    Google Scholar 

  19. V. Anuradha and R. Shivaji. Existence of infinitely many nontrivial bifurcation points,Resultat der Mathematik (to appear).

    Google Scholar 

  20. V. Anuradha and R. Shivaji, Sign changing solutions for a class of superlinear multiparameter semipositone problems Preprint.

    Google Scholar 

  21. S. Unsurangsie, Existence of a solution for a wave equation and elliptic Dirichlet problems Ph.D. Thesis(1988), Univ. of North Texas.

    Google Scholar 

  22. W. Allegretto, P. Nistri, and P. Zecca, Positive solutions of elliptic nonpositone problems,J. Diff. & Int. Eqns (to appear).

    Google Scholar 

  23. K. J. Brown and R. Shivaji, Instability of nonnegative solutions for a class of semipositone problems, Proc. Amer. Math. Soc. 112 (1991), 121–124.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. J. Brown and R. Shivaji, Simple proofs of some results in perturbed bifurcation theory, Proc. Roy. Soc. Edin. 93 (A) (1982), 71–82.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Castro, J. B. Garner and R. Shivaji. Existence results for classes of sublinear semipositone problems Resultat der Mathematik (to appear).

    Google Scholar 

  26. Ph. Clement and L. A. Peletier, An anti—maximum principle for second order elliptic operators, J. Diff. Eqns. 34 (1979), 218–229.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Allegretto and P. Nistri, Existence and stability for nonpositone elliptic problems, J. NonlinearAnalysis, TMA (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castro, A., Shivaji, R. (1993). Semipositone problems. In: Goldstein, G.R., Goldstein, J.A. (eds) Semigroups of Linear and Nonlinear Operations and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1888-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1888-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4834-7

  • Online ISBN: 978-94-011-1888-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics