Skip to main content

The use of transgenic plants to examine phytochrome structure/function

  • Chapter

Abstract

The ability of phytochrome to act as a light-regulated molecular switch must initially result from conformational differences between the red light (R)-absorbing Pr and far-red light (FR)-absorbing Pfr forms of the chromoprotein. As a result, much effort has been directed towards characterizing the structure of purified phytochrome and locating domains that change upon photo-conversion in attempts to understand how phytochrome functions. While many interesting structural domains have been identified to date (Chapter 4.3; Vierstra and Quail 1986; Quail 1991), elucidating the role(s) they play in phytochrome action has been hampered by the lack of an in vitro assay suitable for assessing the biological activity of the chromoprotein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Boylan M.T. and Quail P.H. (1989) Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell 1: 765–773.

    PubMed  CAS  Google Scholar 

  • Cherry J.R., Hondred D., Walker J.M. and Vierstra R.D. (1992) Phytochrome requires the 6-kDa N-terminal domain for full biological activity. Proc. Natl. Acad. Sci. USA 89: 5039–5043.

    Article  PubMed  CAS  Google Scholar 

  • Keller J.M., Shanklin J., Vierstra R.D. and Hershey H.P. (1989) Expression of a functional monocotyledonous phytochrome in transgenic tobacco. EMBOJ. 8:1005–1012.

    CAS  Google Scholar 

  • Nagatani A., Kay S.A., Deak M., Chua N.-H. and Furuya M. (1991) Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc. Natl. Acad. Sci. USA 88: 5207–5211.

    Article  PubMed  CAS  Google Scholar 

  • Quail P.H. (1991) Phytochrome: A light-activated molecular switch that regulates plant gene expression. Annu. Rev. Genet. 25: 389–409.

    Article  PubMed  CAS  Google Scholar 

References

  • Boylan M.T. and Quail P.H. (1991) Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc. Natl. Acad. Sci. USA 88:10806–10810.

    Article  PubMed  CAS  Google Scholar 

  • Cherry J.R., Hershey H.P. and Vierstra R.D. (1991) Characterization of tobacco expressing functional oat phytochrome. Plant Physiol. 96: 775–785.

    Article  PubMed  CAS  Google Scholar 

  • Cherry J.R., Hondred D., Walker J.M., Keller J., Hershey H.P. and Vierstra R.D. (1993) Carboxyl-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological avtivity. Plant Cell in press.

    Google Scholar 

  • Chory, J. (1991) Light signals in leaf and chloroplast development: photoreceptors and downstream responses in search of a transduction pathway. New Biologist. 3: 538–548.

    PubMed  CAS  Google Scholar 

  • Deforce L., Tomizawa K-L, Ito N., Farrens D., Song P.-S. and Furuya M. (1991) In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin. Proc. Natl. Acad. Sci. USA 88:10392–10396.

    Article  PubMed  CAS  Google Scholar 

  • Edgerton M.D. and Jones A.M. (1992) Localization of protein-protein interactions between subunits of phytochrome. Plant Cell 4: 161–171.

    PubMed  CAS  Google Scholar 

  • Firn R.D. (1986) Growth substance sensitivity: the need for clearer ideas, precise terms, and purposeful experiments. Physiol. Plant. 67: 267–272.

    Article  CAS  Google Scholar 

  • Gardner G. and Gorton H.L. (1985) Inhibition of phytochrome synthesis by gabaculine. Plant Physiol. 11: 540–543.

    Article  Google Scholar 

  • Goth A. (1981) Medical Pharmacology. 10th Edition, pp 7–14, C.V. Mosby Co, St Louis.

    Google Scholar 

  • Hanelt S., Braun B., Marx S. and Scheider-Poetsch H.A.W. (1992) Phytochrome evolution: a phylogenetic tree with the first complete sequence of phytochrome from a cryptogamic plant (Selaginella martensii Spring). Photochem. Photobiol. 56: 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Heyer A. and Gatz C. (1992) Isolation and characterization of a cDNA-clone coding for potato type B phytochrome. Plant Mol. Biol. 20: 589–600.

    Article  PubMed  CAS  Google Scholar 

  • Jabben M., Shanklin J. and Vierstra R.D. (1989) Ubiquitin-phytochrome conjugates: pool dynamics during in vivo phytochrome degradation. J. Biol. Chem. 264: 4998–5005.

    PubMed  CAS  Google Scholar 

  • Jones A.M. and Quail P.H. (1986) Quarternary structure of 124-kilodalton phytochrome from Avena sativa L. Biochemistry 25: 2987–2995.

    Article  CAS  Google Scholar 

  • Jones A.M., Vierstra R.D., Daniels S.M. and Quail P.H. (1985) The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L. Planta 164: 501–506.

    Article  CAS  Google Scholar 

  • Jones A.M., Allen, C.D., Gardner G. and Quail P.H. (1986) Synthesis of phytochrome apoprotein and chromophore are not coupled obligatorily. Plant Physiol. 81:1014–1016.

    Article  PubMed  CAS  Google Scholar 

  • Kay S.A., Nagatani A., Keith B., Deak M, Furuya M. and Chua N.-H. (1989) Rice phytochrome is biologically active in transgenic tobacco. Plant Cell 1: 775–782.

    PubMed  CAS  Google Scholar 

  • Lagarias J.C. and Lagarias D.M. (1989) Self-assembly of synthetic phytochrome holoprotein in vitro. Proc. Natl. Acad. Sci. USA 86: 5778–5780.

    Article  PubMed  CAS  Google Scholar 

  • López-Juez E., Nagatani A., Tomizawa K.-L, Deak M., Kern R., Kendrick R.E. and Furuya M. (1992) The cucumber long hypocotyl mutant lacks a light-stable PHYB-like phytochrome. Plant Cell 4: 241–251.

    PubMed  Google Scholar 

  • McCormac A.C., Cherry J.C., Hershey H.P., Vierstra R.D. and Smith H. (1991) Photoresponses of transgenic tobacco plants expressing an oat phytochrome gene. Planta 185:162–170.

    Article  CAS  Google Scholar 

  • McCormac A.C., Whitelam G. and Smith H. (1992) Light-grown plants of transgenic tobacco expressing an introduced phytochrome A gene under the control of a constitutive viral promoter exhibit persistent growth-inhibition by far-red light. Planta 188:173–181.

    Article  CAS  Google Scholar 

  • Parker W., Romanowski M. and Song P.-S. (1991) Conformation and its functional implications in phytochrome. In: Phytochrome Properties and Biological Action, pp. 85–112, Thomas B. and Johnson C.B. (eds.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Parks B.M. and Quail P.H. (1991) Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3:1177–1186.

    PubMed  CAS  Google Scholar 

  • Parks B.M., Shanklin J., Koornneef M., Kendrick R.E. and Quail P.H. (1989) Immunochemically detectable phytochrome is present at normal levels but is photochemically nonfunctional in the hy1 and hy2 long hypocotyl mutants of Arabidopsis. Plant Mol. Biol. 12: 425–437.

    Article  CAS  Google Scholar 

  • Pratt L.H. (1986) Phytochrome: localization within the plant. In: Photomorphogenesis in Plants pp. 61–81, Kendrick R.E. and Kronenberg G.H.M. (eds.) Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Quail P.H., Hershey H.P., Idler K.B., Sharrock R.A., Christensen A.H., Parks B.M., Somers D., Tepperman J., Bruce W.A. and Dehesh K. (1991) Phy-gene structure, evolution, and expression. In: Phytochrome Properties and Biological Action, pp. 13–38, Thomas B. and Johnson C.B. (eds.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Rogers S., Wells R. and Rechsteiner M. (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368.

    Article  PubMed  CAS  Google Scholar 

  • Romanowski M. and Song P.-S. (1992) Structural domains of phytochrome deduced from homologies in amino acid sequence. J. Protein Chem. 11:139–155.

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J., Jabben M. and Vierstra R.D. (1987) Red light-induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation. Proc. Natl. Acad. Sci. USA 84:359–363.

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J., Jabben M. and Vierstra R.D. (1989) Partial purification and peptide mapping of ubiquitin-phytochrome conjugates in oat. Biochemistry. 28: 6028–6034.

    Article  CAS  Google Scholar 

  • Sharkey T.D., Vassey T.L., Vanderveer P.J. and Vierstra R.D. (1991) Carbon metabolism enzymes and photosynthesis in transgenic tobacco (Nicotiana tabacum L.) having excess phytochrome. Planta 185: 287–296.

    Article  CAS  Google Scholar 

  • Sharrock R.A. and Quail P.H. (1989) Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Develop. 3:1745–1757.

    Article  PubMed  CAS  Google Scholar 

  • Sommers D.E., Sharrock R.A., Tepperman J.A. and Quail P.H. (1991) The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. Plant Cell 3: 1263–1274.

    Google Scholar 

  • Stockhaus J., Nagatani A., Halfter U., Kay S., Furuya M. and Chua N.-H. (1992) Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity. Genes Develop. 6: 2364–2372.

    Article  PubMed  CAS  Google Scholar 

  • Thümmler F., Beetz A. and Rudiger W. (1990) Phytochrome in lower plants: Detection and partial sequence of a phytochrome gene in the moss Ceratodonpurpureus. FEBS Lett. 275:125–129.

    Article  PubMed  Google Scholar 

  • Thümmler F., Schuster H. and Bonenberger J. (1992) Expression of the oat phyA gene in the moss Ceratodon purpureus. Photochem. Photobiol. 56: 771–776.

    Article  PubMed  Google Scholar 

  • Vierstra R.D. and Quail P.H. (1985) Spectral characterization and proteolytic mapping of native 120-kilodalton phytochrome from Cucurbita pepo L. Plant Physiol. 77: 990–998.

    Article  PubMed  CAS  Google Scholar 

  • Vierstra R.D. and Quail P.H. (1986) Phytochrome: the protein. In: Photomorphogenesis in Plants, pp 35–60, Kendrick R.E. and Kronenberg G.H.M. (eds.) Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Vince-Prue D. (1986) The duration of light and photoperiodic responses. In: Photomorphogenesis in Plants, pp 269–305, Kendrick R.E. and Kronenberg G.H.M. (eds.) Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Wagner D., Tepperman J.M. and Quail P.H. (1991) Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis. Plant Cell 3:1275–1288.

    PubMed  CAS  Google Scholar 

  • Wang Y.-C, Stewart S.J., Cordonnier M.-M. and Pratt L.H. (1991) Avena sativa L. contains three phytochromes, only one of which is abundant in etiolated tissue. Planta 184: 96–104.

    Article  CAS  Google Scholar 

  • Whitelam G., McCormac A.C., Boylan M.T. and Quail P.H. (1992) Photoresponses of Arabidopsis seedlings expressing an introduced oat phyA gene: persistence of etiolated plant type responses in light-grown plants. Photochem. Photobiol. 56: 617–622.

    Article  CAS  Google Scholar 

  • Wong Y.-S. and Lagarias J.C. (1989) Affinity labeling of Avena phytochrome with ATP analogs. Proc. Natl Acad. Sci. USA 86: 3469–3473.

    Article  PubMed  CAS  Google Scholar 

  • Wong Y.-S., Cheng H.-C, Walsh D.A. and Lagarias J.C. (1986) Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes. J. Biol. Chem. 261: 12089–12097.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cherry, J.R., Vierstra, R.D. (1994). The use of transgenic plants to examine phytochrome structure/function. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics