Skip to main content

Elucidation of the role of osmoprotective compounds and osmoregulatory genes: The key role of bacteria

  • Chapter

Part of the book series: Tasks for vegetation science ((TAVS,volume 27))

Abstract

A series of compounds, including proline and several betaines (glycine betaine, proline betaine), known to accumulate in plants during osmotic stress, have been found to function as osmoprotective compounds for bacteria such as enteric bacteria and Rhizobium meliloti. These molecules can be accumulated in massive amounts in the bacterial cytoplasm without precluding normal cellular functions. Accumulation of glycine betaine, one of the most efficient osmoprotec-tants, contributes to maintaining the proper osmotic strength of the cytoplasm, and thus prevents osmotic dehydration. For the accumulation of glycine betaine, the bacteria need an external supply of this compound or its precursor choline. Uptake systems for both molecules have been characterized. Escherichia coli has both a high-affinity and a low-affinity transport system for choline, and glycine betaine uptake is also mediated by two transport systems (low-affinity and high-affinity). Within the cells, choline never accumulates but is converted into glycine betaine by two dehydrogenases. In E. coli glycine betaine serves only in osmoregulation and cannot be catabolized, whereas in R. meliloti glycine betaine can function as a carbon, nitrogen and energy source, as well as an osmoprotectant. When choline and glycine betaine are not available, the bacteria can also achieve a moderate level of osmotic tolerance by endogenous synthesis of other compatible solutes, such as glutamate and the non-reducing disaccharide trehalose.

Recently, several genes involved in osmoregulation in E. coli (uptake systems and biosynthetic enzymes) have been cloned and sequenced. The bet genes, mapped at 7.5 min, encode the osmoregulatory choline-glycine betaine pathway. Four open reading frames are identified: betA encoding choline dehydrogenase; betB encoding glycine betaine aldehyde dehydrogenase; betT encoding a proton motive force driven, high-affinity transport system for choline; and betl responsible for choline regulation of betB. The proP and proU genes encode two glycine betaine transport systems: proP encodes a constitutive, low-affinity transport system, wdproU encodes a high-affinity system that is strongly induced at the transcriptional level by high osmolarity. The pro U region has been shown to contain three genes, proV, proW, emdproX in one operon. The proV and the proW genes encode a hydrophilic and a hydrophobic protein, respectively, whereas proX encodes a periplasmic glycine betaine-binding protein. Two osmotically regulated genes, otsA and otsB, governing synthesis of trehalose-6-phosphate synthase have also been identified and mapped to 42 min. Trehalose can be degraded by a periplasmic trehalase encoded by the osmotically regulated gene treA which maps at 26 min.

The discovery of all these new osmoregulatory genes in bacteria may provide useful models for understanding turgor mechanisms and osmoresponsive genes in plants. For example, overexpression of the choline-glycine betaine pathway in legumes using Rhizobium as vector may provide clues as to their functions and might even produce plants with increased water stress tolerance. In addition, nucleotide probes for these genes may contribute to selection schemes in breeding programs for drought and salinity. To achieve this challenging goal, the emerging technology must be closely integrated with established procedures of plant improvement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barron, A., Jung, J.U. & Villarejo, M. 1987. Purification and characterization of a glycine betaine binding protein from Escherichia coli. J. Biol. Chem. 262: 11841–11846.

    PubMed  CAS  Google Scholar 

  • Ben-Amotz, A. & Avron, M. 1973. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51: 875–878.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, T., Pocard, J.A., Perroud, B. & Le Rudulier, D. 1986. Variations in the response of salt-stressed Rhizobium strains to betaines. Arch. Microbiol. 143: 359–364.

    Article  CAS  Google Scholar 

  • Blumwald, E. & Tel-Or, E. 1982. Osmoregulation and cell composition in salt-adaptation of Nostoc muscorum. Arch. Microbiol. 132: 168–172.

    Article  CAS  Google Scholar 

  • Boos, W., Ehmann, U., Bremer, E., Middendorf, A. & Postma, P. 1987. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J. Biol. Chem. 262: 13212–13218.

    PubMed  CAS  Google Scholar 

  • Boos, W., Ehmann, U., Forkl, H., Klein, W., Rimmele, M. & Postma, P. 1990. Trehalose transport and metabolism in Escherichia coli. J. Bacteriol. 172: 3450–3461.

    PubMed  CAS  Google Scholar 

  • Borowitzka, L.J., Demmerle, S., Mackay, M.A. & Norton, R.S. 1980. Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science 210: 650–651.

    Article  PubMed  CAS  Google Scholar 

  • Botsford, J.L. & Lewis, T.A. 1990. Osmoregulation in Rhizobium meliloti: production of glutamic acid in response to osmotic stress. Appl. Environ. Microbiol. 56: 488–494.

    PubMed  CAS  Google Scholar 

  • Cairney, C, Booth,.R. & Higgins, CF. 1985a. Salmonella typhimurium proP gene encodes a transport system for the osmoprotectant glycine betaine. J. Bacteriol. 164: 1218–1223.

    PubMed  CAS  Google Scholar 

  • Cairney, C., Booth,.R. & Higgins, CF. 1985b. Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically induced betaine transport system. J. Bacteriol. 164: 1224–1232.

    PubMed  CAS  Google Scholar 

  • Chambers, S.T., Kunin, C.M., Miller, D. & Hamada, A. 1987. Dimeth-ylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia coli. J. Bacteriol. 169: 4845–4847.

    PubMed  CAS  Google Scholar 

  • Christian, J.H.B. 1955. The influence of nutrition on the water relations of Salmonella Oranienburg. Aust. J. Biol. Sci. 8: 75–82.

    CAS  Google Scholar 

  • Csonka, L.N. 1981. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol. Gen. Genet. 182: 82–86.

    Article  PubMed  CAS  Google Scholar 

  • Dandekar, A.M. & Uratsu, S.L. 1988. A single base pair change in proline biosynthesis genes causes osmotic stress tolerance. J. Bacteriol. 170: 5943–5945.

    PubMed  CAS  Google Scholar 

  • Dattananda, C.S. & Gowrishankar, J. 1989. Osmoregulation in Escherichia coli: complementation analysis and gene-protein relationships in the proU locus. J. Bacteriol. 171: 1915–1922.

    PubMed  CAS  Google Scholar 

  • Delauney, A.J. & Verma, D.P.S. 1990. A soybean gene encoding Δ′-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoreg-ulated. Mol. Gen. Genet. 221: 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Eshoo, M.W. 1988. lac Fusion analysis of the bet genes of Escherichia coli: regulation by osmolarity, temperature, oxygen, choline and glycine betaine. J. Bacteriol. 170: 5208–5215.

    PubMed  CAS  Google Scholar 

  • Falkenberg, P. & Strøm, A.R. 1990. Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli. Biochim. Biophys. Acta 1034: 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Flowers, T.J., Hajibagheri, M.A. & Clipson, N.C.W. 1986. Halo-phytes. Quart. Rev. Biol. 61: 313–337.

    Article  Google Scholar 

  • Fougère, F. & Le Rudulier, D. 1990. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. J. Gen. Microbiol. 136: 157–163.

    Article  PubMed  Google Scholar 

  • Galinksi, E.A., Pfeiffer, H.P. & Trüper, H.G. 1985. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid, a novel cyclic amino acid from halophilic bacteria of the genus Ectothiorhodospira, Eur. J. Biochem. 149: 135–139.

    Google Scholar 

  • Giaever, H.M., Styrvold, O.B., Kaasen, I. & Strøm, A.R. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170: 2841–2849.

    PubMed  CAS  Google Scholar 

  • Gloux, K. & Le Rudulier, D. 1989. Transport and catabolism of proline betaine in salt-stressed Rhizobium meliloti. Arch. Microbiol. 151: 143–148.

    Article  CAS  Google Scholar 

  • Gowrishankar, J. 1989. Nucleotide sequence of the osmoregulatory proU operon of Escherichia coli. J. Bacteriol. 171: 1923–1931.

    PubMed  CAS  Google Scholar 

  • Gustafson, L. & Norkrans, B. 1976. On the mechanism of salt tolerance. Production of glycerol and heat during growth of Debaryomyces hansenii. Arch. Microbiol. 110: 177–183.

    Article  Google Scholar 

  • Gutierrez, C., Ardourel, M., Bremer, E., Middendorf, A., Boos, W. & Ehmann, U. 1989. Analysis and DNA sequence of osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coli K-12. Mol. Gen. Genet. 217: 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, C.F., Sutherland, L., Cairney, J. & Booth, I.R. 1987. The osmotically regulated proU locus of Salmonella typhimurium encodes a periplasmic binding protein. J. Gen. Microbiol. 133: 305–310.

    PubMed  CAS  Google Scholar 

  • Higgins, C.F., Dorman, C.J., Stirling, D.A., Waddell, L., Booth, I.R., May, G. & Bremer, E. 1988. A physological role for DNA super-coiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52: 569–584.

    Article  PubMed  CAS  Google Scholar 

  • Landfald, B. & Strøm, A.R. 1986. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol. 165: 849–855.

    PubMed  CAS  Google Scholar 

  • Lamark, T., Kaasen, I., Eshoo, M.W., Falkenberg, P., McDougall, J. & Strøm, A.R. 1991. DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Molecular Microbiol. 5: 1049–1064.

    Article  CAS  Google Scholar 

  • Larsen, P.I., Sydness, L.K., Landfald, B. & Strøm, A.R. 1987. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch. Microbiol. 147: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Le Rudulier, D. & Bernard, T. 1986. Salt tolerance in Rhizobium: a possible role for betaines. FEMS Microbiol. Reviews 39: 67–72.

    Google Scholar 

  • Le Rudulier, D. & Valentine, R.C. 1982. Genetic engineering in agriculture: osmoregulation. Trends Biochem. Sci. 7: 431–433.

    Article  Google Scholar 

  • Le Rudulier, D. & Bouillard, L. 1983. Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl. Environ. Microbiol. 46: 152–159.

    PubMed  Google Scholar 

  • Le Rudulier, D., Strøm, A.R., Dandekar, A., Smith, L.T. & Valentine, R.C. 1984a. Molecular biology of osmoregulation. Science 224: 1065–1068.

    Google Scholar 

  • Le Rudulier, D., Bernard, T, Goas, G. & Hamelin, J. 1984b. Osmoregulation in Klebsieila pneumoniae: enhancement of anaerobic growth and nitrogen fixation under stress by proline betaine, γ-bu-tyrobetaine, and other related compounds. Can. J. Microbiol. 30: 299–305.

    Article  PubMed  Google Scholar 

  • Le Rudulier, D., Yang, S.S. & Csonka, L.N. 1982. Nitrogen fixation in Klebsiella pneumoniae during osmotic stress: effect of exogenous proline or a proline overproducing plasmid. Biochim. Biophys. Acta 719: 273–283.

    Article  PubMed  Google Scholar 

  • Mackay, M.A., Norton, R.S. & Borowitzka, L.J. 1984. Organic osmoregulatory solutes in cyanobacteria. J. Gen. Microbiol. 130: 2177–2191.

    CAS  Google Scholar 

  • McLaggan, D., Logan, T.M., Lynn, D.G. & Epstein, W. 1990. Involvement of γ-glutamyl peptides in osmoadaptation of Escherichia coli. J. Bacteriol. 172: 3631–3636.

    PubMed  CAS  Google Scholar 

  • Mahan, M.J. & Csonka, L.N. 1983. Genetic analysis of the proBA gene of Salmonella typhimurium: physical and genetic analyses of the cloned proB + A + genes of Escherichia coli and of a mutant allele that confers proline overproduction and enhanced osmotolerance. J. Bacteriol. 156: 1248–1262.

    Google Scholar 

  • May, G., Faatz, E., Villarejo, M. & Bremer, E. 1986. Binding protein dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K-12. Mol. Gen. Genet. 205: 225–2

    Article  PubMed  CAS  Google Scholar 

  • Measures, J.C. 1975. Role of amino acids in orsmoregulation of non-halophilic bacteria. Nature (London) 257: 398–400.

    Article  CAS  Google Scholar 

  • Perroud, B. & Le Rudulier, D. 1985. Glycine betaine transport in Escherichia coli: osmotic modulation. J. Bacteriol. 161: 393–401.

    PubMed  CAS  Google Scholar 

  • Rhodes, D. 1987. Metabolic responses to stress. In: P.K. Stumpf et al. (eds), The Biochemistry of Plants: A Comprehensive Treatise. Vol. 12: Physiology of Metabolism, pp.201–241. Academic Press, New York.

    Google Scholar 

  • Robertson, D.E., Roberts, M.F., Belay, N., Stetter, K.O. & Boone, D.R. 1990. Occurrence of β-glutamate, a novel osmolyte, in marine methanogenic bacteria. Appl. Environ. Microbiol. 56: 1504–1508.

    PubMed  CAS  Google Scholar 

  • Singh, N.K., Nelson, D.E., Kuhn, D., Hasegawa, P.M. & Bressan, R.A. 1989. Molecular cloning of osmotic and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol. 90: 1096–1101.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L.T. 1985. Characterization of a γ-glutamyl kinase from Escherichia coli that confers proline overproduction and osmotic tolerance. J. Bacteriol. 164: 1088–1093.

    PubMed  CAS  Google Scholar 

  • Smith, L.T., Pocard, J.A., Bernard, T. & Le Rudulier, D. 1988. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J. Bacteriol. 170: 3142–3149.

    PubMed  CAS  Google Scholar 

  • Smith, L.T. & Smith, G.M. 1989. An osmoregulated dipeptide in stressed Rhizobium meliloti. J. Bacteriol. 171: 4714–4717.

    PubMed  CAS  Google Scholar 

  • Stirling, D.A., Hultin, C.S.J., Waddell, L., Park, S.F., Stewart, G.S.A.B., Booth, I.R. & Higgins, CF. 1989. Molecular characterization of the proU loci of Salmonella typhimurium and Escherichia coli encoding osmoregulated glycine betaine transport systems. Molecular Microbiol. 3: 1025–1038.

    Article  CAS  Google Scholar 

  • Strøm, A.R., Le Rudulier, D., Jakowec, M.W., Bunnell, R.C. & Valentine, R.C. 1983. Osmoregulatory (Osm) genes and osmoprotective compounds. In: T. Kosuge, C.P. Meredith & A. Hollaender (eds), Genetic Engineering of Plants, an Agricultural Perspective, pp. 39–59. Plenum Press, New York.

    Chapter  Google Scholar 

  • Strøm, A.R., Falkenberg, P. & Landfald, B. 1986. Genetics of osmoregulation in Escherichia coli: uptake and biosynthesis of organic osmolytes. FEMS Microbiol. Reviews 39: 79–86.

    Google Scholar 

  • Styrvold, O.B., Falkenberg, P., Landfald, B., Eshoo, M.W., Bjornsen, T. & Strøm, A.R. 1986. Selection, mapping, and characterization of osmoregulatory mutants of Escherichia coli blocked in the choline-glycine betaine pathway. J. Bacteriol. 165: 856–863.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Le Rudulier, D. (1993). Elucidation of the role of osmoprotective compounds and osmoregulatory genes: The key role of bacteria. In: Lieth, H., Al Masoom, A.A. (eds) Towards the rational use of high salinity tolerant plants. Tasks for vegetation science, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1858-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1858-3_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4821-7

  • Online ISBN: 978-94-011-1858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics