Interelement correlations in the mangrove, Rhizophora mangle L.

  • R. Jayasekera
  • H. Lieth
Part of the Tasks for vegetation science book series (TAVS, volume 27)


Assuming linear relationships between elements, some significant interelement relationships were detected in Rhizophora mangle grown over a salinity gradient. Sodium (Na) had a clear antagonistic effect on the uptake of potassium (K), whereas the uptake of chromium (Cr) and arsenic (As) seemed to be stimulated by sodium ions. A positive relationship between leaf carbon content and sodium concentration was also found. A significant negative correlation was found between the chemically related two elements, rubidium (Rb) and caesium (Cs). Owing to the competition with the absorption of K+ and NH+ 4 a negative relationship between nitrogen (N) and potassium (K) was found.


correlation matrix interelement correlations mangrove Rhizophora mangle minerals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adriano, D.C. 1986. Trace Elements in the Terrestrial Environment. Springer Verlag, New York.CrossRefGoogle Scholar
  2. Baumeister, W. & Ernst, W. 1978. Mineralstoffe und Pflanzenwachstum. Gustav Fischer Verlag, Stuttgart, New York.Google Scholar
  3. Bohn, H.L., McNeal, B.L. & O’Connor, G.A. 1979. Soil Chemistry. John Wiley & Sons, New York, Brisbane, Toronto.Google Scholar
  4. Chapin, F.S. 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260.CrossRefGoogle Scholar
  5. Epstein, E. 1972. Mineral Nutrition of Plants: Principles and Perspectives. John Wiley & Sons, Inc., New York, London.Google Scholar
  6. Garten, C.T. Jr. 1976. Correlations between concentrations of elements in plants. Nature 261: 686–688.CrossRefGoogle Scholar
  7. Haynes, R.J. & Goh, K.M. 1978. Ammonium and nilrate nutrition of plants. Biol. Rev. 53: 465–510.CrossRefGoogle Scholar
  8. Jayasekera, R. 1987. Growth characteristics and element uptake of the two mangrove species, Rhizophora mangle L. and R. mucronata Lamk. under different environmental conditions. Ph.D. Thesis. University of Osnabrück, Germany.Google Scholar
  9. Jayasekera, R. & Markert, B. 1989. Multi-laboratory chemical characterization of ecological samples. Fresenius’ Z. Anal. Chem. 334: 226–230.CrossRefGoogle Scholar
  10. Jayasekera, R. & Lieth, H. 1992. Effect of available rooting volume on seedling growth. In: H. Lieth & A. Al Masoom (eds): Towards the rational use of high salinity tolerant plant. Vol. 1: 227–232.Google Scholar
  11. Kabata-Pendias, A. & Pendias, H. 1984. Trace Elements in Soils and Plants. CRC Press, Boca Raton, Florida.Google Scholar
  12. Kramer, P.J. 1969. Plant and Soil Water Relationships — A Modern Synthesis. U.K. Edition. McGraw-Hill Book Company, Inc., New York.Google Scholar
  13. Lieth, H. & Markert, B. 1988. Aufstellung und Auswertung oekosystemarer Element-Konzentrations-Kataster. Springer Verlag, Berlin, New York.CrossRefGoogle Scholar
  14. Pannier, F. 1984. Mangrove physiology: Water relations. In: S.C. Snedaker & J.G. Snedaker (eds), The Mangrove Ecosystem: Research Methods, pp. 208–230. UNESCO Publication.Google Scholar
  15. Rossbach, M., Stoeppler, M. & Nuernberg, H.W. 1985. Trace element correlations and fingerprinting of environmental specimen bank related materials. In: T.D. Lekkas (ed), Heavy Metals in the Environment, Vol. 2, pp. 504–506. International Conference, Athens.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • R. Jayasekera
    • 1
  • H. Lieth
    • 2
  1. 1.Department of BotanyUniversity of KelaniyaSri Lanka
  2. 2.Department of EcologyUniversity of OsnabrückOsnabrückGermany

Personalised recommendations