Skip to main content

Variability of QCA-core laboratory assessments of coronary anatomy

  • Chapter
Advances in Quantitative Coronary Arteriography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 137))

Summary

Quantitative coronary arteriography (QCA) has become an essential part of centralized core laboratory evaluations for clinical investigations. Most evaluations of variability of quantitative arteriography have been internally controlled studies with little relevancy to factors associated with core laboratory analyses of large populations. We therefore investigated the variability of repetitive quantitative analyses performed on randomly chosen films from ongoing clinical trials, comparing the relative and absolute parameters determined from internally and externally controlled evaluations. In addition, as quantitative methods and systems are known to vary among core facilities, we evaluated the variability of differing frame selection methods and assessed inter-laboratory variability on differing automated quantitative systems.

Assessments of variability between externally and internally controlled evaluations were found to be dissimilar. The variability (standard deviation) of relative assessment parameters (percent diameter stenosis) in the externally controlled evaluations was 56% greater than the variability of the internally controlled evaluations and absolute parameter variability was found to be 70% greater. Averaged minimal lumen diameter (MLD) from orthogonal projections was found to be the least variable parameter.

Frame selection methodology was not found to be of consequence to the variability of quantitative assessments. No significant differences were found between analyses performed on frames chosen by differing methods, or between frames of each method and frames selected from end-diastole, end-systole, or end-diastasis.

Inter-laboratory variability was determined from automated computer analysis of the randomly chosen frames performed by independent laboratories. Subjectively defined reference diameter values correlated poorly with automated computer reference values (r = 0.66). Consequently, percent diameter stenosis comparisons were found to reflect this variability. In addition, differences in MLD values between laboratories (0.23 ± 0.37 mm) were found to be significantly different (p < 0.05), despite similar assessment techniques.

These studies of core laboratory variability emphasize the need for independent and externally controlled evaluations of core laboratory performance, and standardization of QCA calibration and validation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Detre KM, Wright E, Murphy ML, Takaro T. Observer agreement in evaluating coronary angiograms. Circulation 1975; 52: 979–86.

    Article  PubMed  CAS  Google Scholar 

  2. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interobserver variability in coronary angiography. Circulation 1976; 53: 627–32.

    Article  PubMed  CAS  Google Scholar 

  3. DeRouen TA, Murray JA, Owen W. Variability in the analysis of coronary arteriograms. Circulation 1977; 55: 324–8.

    Article  PubMed  CAS  Google Scholar 

  4. Sanmarco ME, Brooks SH, Blankenhorn DH. Reproducibility of a consensus panel in the interpretation of coronary angiograms. Am Heart J 1978; 96: 430–7.

    Article  PubMed  CAS  Google Scholar 

  5. Fisher LD, Judkins MP, Lesperance J, et al. Reproducibility of coronary arteriographic reading in the coronary artery surgery study (CASS). Cathet Cardiovasc Diagn 1982; 8: 565–75.

    Article  PubMed  CAS  Google Scholar 

  6. Meier B, Gruentzig AR, Goebel N, Pyle R, von Gosslar W, Schlumpf M. Assessment of stenoses in coronary angioplasty. Inter-and intraobserver variability. Int J Cardiol 1983; 3: 159–69.

    Article  PubMed  CAS  Google Scholar 

  7. Kalbfleisch SJ, McGillem MJ, Pinto IMF, Kavanaugh KM, DeBoe SF, Mancini GBJ. Comparison of automated quantitative coronary angiography with caliper measurements of percent diameter stenosis. Am J Cardiol 1990; 65: 1181–4.

    Article  PubMed  CAS  Google Scholar 

  8. Scoblionko DP, Brown BG, Mitten S, et al. A new digital electronic caliper for measurement of coronary arterial stenosis: comparison with visual estimates and computer-assisted measurements. Am J Cardiol 1984; 53: 689–93.

    Article  PubMed  CAS  Google Scholar 

  9. Skelton TN, Kisslo KB, Mikat EM, Bashore TM. Accuracy of digital angiography for quantitation of normal coronary luminal segments in excised, perfused hearts. Am J Cardiol 1987; 59: 1261–5.

    Article  PubMed  CAS  Google Scholar 

  10. Mancini GBJ, Simon SB, McGillem MJ, LeFree MT, Friedman HZ, Vogel RA. Automated quantitative coronary arteriography: morphologic and physiologic validation in vivo of a rapid digital angiographic method. Circulation 1987; 75: 452–60.

    Article  PubMed  CAS  Google Scholar 

  11. Rosenberg MC, Klein LW, Agarwal JB, Stets G, Hermann GA, Helfant RH. Quantification of absolute luminal diameter by computer-analyzed digital subtraction angiography: an assessment in human coronary arteries. Circulation 1988; 77: 484–90.

    Article  PubMed  CAS  Google Scholar 

  12. Popma JJ, Eichorn EJ, Dehmer GJ. In vivo assessment of a digital angiographic method to measure absolute coronary artery diameters. Am J Cardiol 1989; 64: 131–8.

    Article  PubMed  CAS  Google Scholar 

  13. Klein LW, Agarwal JB, Rosenberg MC, et al. Assessment of coronary artery stenoses by digital subtraction angiography: a patho-anatomic validation. Am Heart J 1987; 113: 10117.

    Google Scholar 

  14. Katritsis D, Lythall DA, Anderson MH, Cooper IC, Webb-Peploe MM. Assessment of coronary angioplasty by an automated digital angiographic method. Am Heart J 1988; 116: 1181–7.

    Article  PubMed  CAS  Google Scholar 

  15. Beauman GJ, Vogel RA. Accuracy of individual and panel visual interpretations of coronary arteriograms: implications for clinical decisions. J Am Coll Cardiol 1990; 16: 108–13.

    Article  PubMed  CAS  Google Scholar 

  16. LeFree MT, Simon SB, Mancini GBJ, Bates ER, Vogel RA. A comparison of 35 mm cine film and digital radiographic image recording: implications for quantitative coronary arteriography. Film vs. digital coronary quantification. Invest Radiol 1988; 23: 176–83.

    Article  PubMed  CAS  Google Scholar 

  17. LeFree MT, Simon SB, Mancini GBJ, Vogel RA. Digital radiographic assessment of coronary arterial diameter and videodensitometric cross sectional area. Proc SPIE 1986; 626: 334–41.

    Article  Google Scholar 

  18. Brown BG, Bolson E, Dodge HT. Quantitative computer techniques for analyzing coronary arteriograms. Prog Cardiovasc Dis 1986; 28: 403–18.

    Article  PubMed  CAS  Google Scholar 

  19. Reiber JHC, Serruys PW, Kooijman CJ, et al. Assessment of short-, medium-, and longterm variations in arterial demensions from computer-assisted quantitation of coronary cineangiograms. Circulation 1985; 71: 280–8.

    Article  PubMed  CAS  Google Scholar 

  20. Van der Zwet PMJ, Pinto IMF, Serruys PW, Reiber JHC. A new approach for the automated definition of path lines in digitized coronary angiograms. Int J Card Imaging 1990; 5: 75–83.

    Article  PubMed  Google Scholar 

  21. Reiber JHC. An overview of coronary quantitation techniques as of 1989. In: Reiber JHC, Serruys PW (Eds.), Quantitative coronary arteriography. Dordrecht: Kluwer Academic Publishers 1991: 55–132.

    Chapter  Google Scholar 

  22. Van der Zwet PMJ, Von Land CD, Loois G, Gerbrands JJ, Reiber JHC. An on-line system for the quantitative analysis of coronary arterial segments. Comput Cardiol 1990: 157–60.

    Google Scholar 

  23. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary arteriography. Estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977; 55: 329–337.

    Article  PubMed  CAS  Google Scholar 

  24. Dehmer GJ, Popma JJ, van den Berg EK, et al. Reduction in the rate of early restenosis after coronary angioplasty by a diet supplemented with n-3 fatty acids. N Engl J Med 1988; 319: 733–40.

    Article  PubMed  CAS  Google Scholar 

  25. Nichols AB, Gabrieli CFO, Fenoglio JJ Jr, Esser PD. Quantification of relative coronary arterial stenosis by cinevideodensitometric analysis of coronary arteriograms. Circulation 1984; 69: 512–22.

    Article  PubMed  CAS  Google Scholar 

  26. Sanz ML, Mancini GBJ, LeFree MT, et al. Variability of quantitative digital subtraction coronary angiography before and after percutaneous transluminal coronary angioplasty. Am J Cardiol 1987; 60: 55–60.

    Article  PubMed  CAS  Google Scholar 

  27. Tobis J, Nalcioglu O, Johnston WD, et al. Videodensitometric determination of minimum coronary artery luminal diameter before and after angioplasty. Am J Cardiol 1987; 59: 3844.

    Article  Google Scholar 

  28. Lesperance J, Hudson G, White CW, Laurier J, Waters D. Comparison by quantitative angiographie assessment of coronary stenoses of one view showing the severest narrowing to two orthogonal views. Am J Cardiol 1989; 64: 462–5.

    Article  PubMed  CAS  Google Scholar 

  29. Gurley JC, Nissen SE, Haynie D, Sublett K, Booth DC, DeMaria AN. Is routine automated quantitative analysis of coronary arteriography feasible? Evaluation of operator-dependent variables inherent to the technique. J Am Coll Cardiol 1990, 15 (2 Suppl A): 115A (Abstract).

    Article  Google Scholar 

  30. Reiber JHC, Van Eldik-Helleman P, Visser-Akkerman N, Kooijman CJ, Serruys PW. Variabilities in measurement of coronary arterial dimensions resulting from variations in cineframe selection. Cathet Cardiovasc Diagn 1988; 14: 221–8.

    Article  PubMed  CAS  Google Scholar 

  31. Reiber JHC, Van Eldik-Helleman P, Kooijman CJ, Tijssen JGP, Serruys PW. How critical is the frame selection in quantitative coronary angiographie studies? Eur Heart J 10 (Suppl F), 1989: 54–59.

    Article  PubMed  Google Scholar 

  32. Selzer RH, Hagerty C, Azen SP, et al. Precision and reproducibility of quantitative coronary angiography with applications to controlled clinical trails. A sampling study. J Clin Invest 1989; 83: 520–6.

    Article  PubMed  CAS  Google Scholar 

  33. Langer A, Wilson RF, Comparison of manual versus automated edge detection for determining degrees of luminal narrowing by quantitative coronary angiography. Am J Cardiol 1991; 67: 885–8.

    Article  PubMed  CAS  Google Scholar 

  34. Harrison DG, White CW, Hiratzka LF, et al. The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenosis. Circulation 1984; 69: 1111–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beauman, G.J., Reiber, J.H.C., Koning, G., Vogel, R.A. (1993). Variability of QCA-core laboratory assessments of coronary anatomy. In: Reiber, J.H.C., Serruys, P.W. (eds) Advances in Quantitative Coronary Arteriography. Developments in Cardiovascular Medicine, vol 137. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1854-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1854-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4819-4

  • Online ISBN: 978-94-011-1854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics