Skip to main content

Cyclic flow alterations and neointimal proliferation following experimental coronary stenosis and endothelial injury

  • Chapter
Advances in Quantitative Coronary Arteriography

Summary

We evaluated the hypothesis that recurrent platelet aggregation as evidenced by the frequency and severity of cyclic coronary blood flow variations is an important pathophysiologic factor in the development of neointimal proliferation. In 24 chronically instrumented dogs, variable degrees of coronary artery neointimal proliferation were observed 3 weeks after mechanical injury of the arterial endothelium and the placement of an external coronary artery constrictor. The severity of neointimal proliferation at 21 days was closely related to the frequency and severity of cyclic coronary blood flow variations during the initial 7 days after instrumentation of the animals. Pharmacological therapy with a dual thromboxane A2 synthetase inhibitor and receptor antagonist and a serotonin S2 receptor antagonist frequently was successful in abolishing cyclic blood flow variations and appeared to attenuate neointimal proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willerson JT, Golino P, Eidt J, Campbell WB, Buja LM. Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications. Circulation 1989; 80: 198–205.

    Article  PubMed  CAS  Google Scholar 

  2. Willerson JT, Campbell WB, Winniford MD, et al. Conversion from chronic to acute ischemic heart disease: speculation regarding mechanisms (editorial). Am J Cardiol 1984; 54: 1349–57.

    Article  PubMed  CAS  Google Scholar 

  3. Ross R. The pathogenesis of atherosclerosis - an update. N Engl J Med 1986; 314: 488–500.

    Article  PubMed  CAS  Google Scholar 

  4. Davies MJ, Woolf N, Rowles PM, Pepper J. Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Br Heart J 1988; 60: 459–64.

    Article  PubMed  CAS  Google Scholar 

  5. Golino P, Ashton JH, Buja LM, et al. Local platelet activation causes vasoconstriction of large epicardial canine coronary arteries in vivo: Thromboxane A2 and serotonin are possible mediators. Circulation 1989; 79: 154–66.

    Article  PubMed  CAS  Google Scholar 

  6. Clowes AW, Reidy MA, Clowes MM. Mechanisms of stenosis after arterial injury. Lab Invest 1983; 49: 208–15.

    PubMed  CAS  Google Scholar 

  7. Harker LA, Harlan, JJ, Ross R. Effect of sulfinpyrazone on homocysteine-induced endothelial injury and arteriosclerosis in baboons. Circ Res 1983; 53: 731–9.

    Article  PubMed  CAS  Google Scholar 

  8. Reidy MA. Endothelial regeneration. VIII. Interaction of smooth muscle cells with endothelial regrowth. Lab Invest 1988; 59: 36–43.

    PubMed  CAS  Google Scholar 

  9. Tada T, Reidy MA. Endothelial Regeneration. IX. Arterial injury followed by rapid endothelial repair induced smooth-muscle-cell proliferation but not intimai thickening. Am J Pathol 1987; 129: 429–33.

    PubMed  CAS  Google Scholar 

  10. Clowes AW, Reidy MA. Mechanisims of arterial graft failure: the role of cellular prolifation. Ann N Y Acad Sci 1987; 516: 673–8.

    Article  PubMed  CAS  Google Scholar 

  11. Sprugel KH, McPherson JM, Clowes AW, Ross R. Effects of growth factors in vivo. I. Cell ingrowth into porous subcutaneous chambers. Am J Pathol 1987; 129: 601–13.

    PubMed  CAS  Google Scholar 

  12. Liu MW, Roubin GS, King SB. Restenosis after coronary angioplasty: potential biologic determinants and role of intimai hyperplasia. Circulation 1989; 79: 1374–87.

    Article  PubMed  CAS  Google Scholar 

  13. Block PC, Myler PK, Stertzer S, Fallon JT. Morphology after transluminal angioplasty in human beings. N Engl J Med 1981; 305: 382–5.

    Article  PubMed  CAS  Google Scholar 

  14. Uchida Y, Kawamura K, Shibuya I, Hasegawa K. Percutaneous angioscopy of the coronary luminal changes induced by PTCA Circulation 1988; 78 (4 Suppl II): II-84 (Abstract).

    Google Scholar 

  15. Faxon DP, Sanborn TA, Weber VJ, et al. Restenosis following transluminal angioplasty in experimental atherosclerosis. Arteriosclerosis 1984; 4: 189–95.

    Article  PubMed  CAS  Google Scholar 

  16. Anderson HV, Yao S, Murphree SS, Buja LM, McNatt JM, Willerson JT. Cyclic coronary artery flow in dogs after coronary artery angioplasty. Coronary Artery Dis 1990; 1: 71723.

    Google Scholar 

  17. Essed CE, van den Brand M, Becker AE. Transluminal coronary angioplasty and early restenosis. Fibrocellular occulusion after wall laceration. Br Heart J 1983: 49: 393–6.

    Article  PubMed  CAS  Google Scholar 

  18. Austin GE, Ratliff NB, Hollman J, Tabei S, Phillips DF. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1985; 6: 369–75.

    Article  PubMed  CAS  Google Scholar 

  19. DeClerck F, Beetens J, de Chaffoy de Courcelles D, Freyne E, Janssen PAJ. Thromboxane A2 synthetase inhibition and thromboxane A2/prostaglandin endoperoxide receptor block-ade combined in one molecule. I. Biochemical profile in vitro. Thromb Haemost 1989; 61: 35–42.

    CAS  Google Scholar 

  20. DeClerck F, David J, Janssen PAJ. Inhibition of 5-hydroxytryptamine-induced and -amplified human platelet aggregation by ketanserin (R 41 468), a selective 5-HT2-receptor antagonist. Agents Actions 1982; 12: 388–97.

    Article  CAS  Google Scholar 

  21. Cohen ML, Fuller RW, Kurz KD. LY53857, a selective and potent serotonergic (5-HT2) receptor antagonist, does not lower blood pressure in the spontaneously hypertensive rat. J Pharmacol Exp Ther 1983; 227: 327–32.

    PubMed  CAS  Google Scholar 

  22. Bush L, Campbell WB, Buja LM, Tilton GD, Willerson JT. Effects of the selective thromboxane synthetase inhibitor dazoxiben on variations in cyclic blood flow in stenosed canine coronary arteries. Circulation 1984; 69: 1161–70.

    Article  PubMed  CAS  Google Scholar 

  23. Folts JD, Crowell EB Jr, Rowe GG. Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 1976; 54: 365–70.

    Article  PubMed  CAS  Google Scholar 

  24. Ashton JH, Schmitz JM, Campbell WB, et al. Inhibition of cyclic flow variations in stenosed canine coronary arteries by thromboxane A2/prostaglandin H2 receptor antagonists. Circ Res 1986; 59: 568–78.

    Article  PubMed  CAS  Google Scholar 

  25. Ashton JH, Ogletree ML, Michel IM, et al. Serotonin and thromboxane A2/prostaglandin H2 receptor activation cooperatively mediate cyclic flow variations in dogs with severe coronary artery stenoses. Circulation 1987; 76: 952–9.

    Article  PubMed  CAS  Google Scholar 

  26. Golino P, Buja LM, Ashton JH, Kulkarni P, Taylor A, Willerson JT. Effect of thromboxane and serotonin receptor antagonists on intracoronary platelet deposition in dogs with experimentally stenosed coronary arteries. Circulation 1988; 78: 701–11.

    Article  PubMed  CAS  Google Scholar 

  27. Eidt JF, Ashton J, Golino P, McNatt J, Buja LM, Willerson JT. Thromboxane A2 and serotonin mediate coronary blood flow reductions in unsedated dogs. Am J Physiol 1989; 257: H8 73–82.

    Google Scholar 

  28. Ashton JH, Benedict CR, Fitzgerald C et al. Serotonin is a mediator of cyclic flow variations in stenosed canine coronary arteries. Circulation 1986; 73: 572–8.

    Article  PubMed  CAS  Google Scholar 

  29. Yao SK, Rosolowsky M, Anderson HV, et al. Combined thromboxane A2 synthetase inhibition and receptor blockage are effective in preventing spontaneous and epinephrine-induced canine coronary cyclic flow variations. J Am Coll Cardiol 1990; 16: 705–13.

    Article  PubMed  CAS  Google Scholar 

  30. Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 1986; 46: 155–69.

    Article  PubMed  CAS  Google Scholar 

  31. Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989; 243: 393–6.

    Article  PubMed  CAS  Google Scholar 

  32. Geisterfer AA, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 1988; 62: 749–56.

    Article  PubMed  CAS  Google Scholar 

  33. Shuman MA. Thrombin-cellular interactions. Ann N Y Acad Sci 1986; 485: 228–39.

    Article  PubMed  CAS  Google Scholar 

  34. Hansson GK, Jonasson L, Lojsthed B, Stemme S, Kocher O, Gabbiai G. Localization of T lymphocytes and macrophages in fibrous and commplicated human atherosclerotic plaques. Atherosclerosis 1988; 72: 135–41.

    Article  PubMed  CAS  Google Scholar 

  35. Klagsbrun M, Edelman ER. Biological and biochemical properties of fibroblast growth factors. Arteriosclerosis 1989; 9: 269–78.

    Article  PubMed  CAS  Google Scholar 

  36. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83: 4167–71.

    Article  PubMed  CAS  Google Scholar 

  37. Wilcox JN, Smith KM, Williams LT, Schwartz SM, Gordon D. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J Clin Invest 1988; 82: 1134–43.

    Article  PubMed  CAS  Google Scholar 

  38. Percutaneous transluminal angioplasty. Council on Scientific Affairs. JAMA 1984; 251: 7648.

    Google Scholar 

  39. Fingerle J, Johnson R, Clowes AW, Majesky MW, Reidy MA. Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc Natl Acad Sci U S A 1989; 86: 8412–6.

    Article  PubMed  CAS  Google Scholar 

  40. Friedman RJ, Stemerman MB, Wenz B, et al. The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. Smooth muscle cell proliferation and reendothelialization. J Clin Invest 1977; 60: 1191–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Willerson, J.T. et al. (1993). Cyclic flow alterations and neointimal proliferation following experimental coronary stenosis and endothelial injury. In: Reiber, J.H.C., Serruys, P.W. (eds) Advances in Quantitative Coronary Arteriography. Developments in Cardiovascular Medicine, vol 137. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1854-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1854-5_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4819-4

  • Online ISBN: 978-94-011-1854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics