Skip to main content

A Pathologist’s view of quantitative coronary arteriography

  • Chapter
Advances in Quantitative Coronary Arteriography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 137))

  • 49 Accesses

Summary

The arteriographic lumen outline has major drawbacks in assessing wall disease. Atherosclerotic vessels dilate in a remodelling response to preserve lumen dimensions; only when the capacity of this response is overcome does stenosis occur. In diffuse atherosclerosis the media remodels to allow an overall increase in the external diameter of the vessel often with an increase in lumen diameter above normal at that site. Localised plaques are associated with atrophy of the subjacent media and rupture of the internal elastic lamina allowing the plaque to bulge outward into the adventitia. Vessels which appear angiographically normal or slightly irregular may therefore contain large plaques. Arteries which have been distended during fixation show that normal segments have a round lumen; at sites of eccentric stenosis the residual segment of normal vessel wall has a round profile while the more rigid plaque is straighter giving a D shape to the lumen.

The implications of these facts for methods of quantification which compare the lumen diameter at a point of stenosis with an adjacent normal reference segment are:

  1. 1.

    The lumen shape at eccentric stenosis is not round and will alter both in shape, and size, with variation of tone within the normal residual wall segment.

  2. 2.

    The reference segment, taken as normal, may either be narrowed or dilated.

The progression of coronary atherosclerosis is dependent, in part, on episodes of thrombosis the majority of which are clinically silent. Unless major intraluminal thrombosis has occurred, angiography may be relatively insensitive at detecting these unstable plaques The repair response in these plaques involves smooth muscle proliferation to smooth the lumen outline. Angiographic changes due to these repair responses may considerably alter both the test and reference segment in the time interval between two angiograms and may be erroneously regarded as regression of the basic atherosclerotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marcus ML, Skorton DJ, Johnson MR, Collins SM, Harrison DG, Kerber RE. Visual estimates of percent diameter coronary stenosis: “a battered gold standard”. J Am Coll Cardiol 1988; 11: 882–5.

    Article  PubMed  CAS  Google Scholar 

  2. Gould KL, Kelley KO, Bolson EL. Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation 1982; 66: 930–7.

    Article  PubMed  CAS  Google Scholar 

  3. Lichtlen PR, Hugenholtz PG, Rafflenbeul W, Hecker H, Jost S, Deckers JW. Retardation of angiographie progression of coronary artery disease by nifedipine. Results of the Interna-tional Nifedipine Trial on Antiatherosclerosis Therapy (INTACT). INTACT Group Investigators. Lancet 1990; 335: 1109–13.

    Article  PubMed  CAS  Google Scholar 

  4. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990; 323: 1289–98. Comment in: N Engl J Med 1990; 323: 1337–9.

    Google Scholar 

  5. Strong JP, Solberg LA, Restrepo C. Atherosclerosis in persons with coronary heart disease. Lab Invest 1968; 18: 527–37.

    PubMed  CAS  Google Scholar 

  6. Relationship of atherosclerosis in young men to serum lipoprotein cholesterol concentrations and smoking. A preliminary report from the Pathological Determinants of Atherosclerosis in Youth. (PDAY) Research Group JAMA 1990; 264: 3018–24. Comment in: JAMA 1990; 264: 3060–1.

    Google Scholar 

  7. Robertson WB, Strong JP. Atherosclerosis in persons with hypertension and diabetes mellitus. Lab Invest 1968; 18: 538–51.

    PubMed  CAS  Google Scholar 

  8. Blankenhorn DH, Kramsch DM. Reversal of atherosis and sclerosis. The two components of atherosclerosis. Circulation 1989; 79: 1–7.

    Article  PubMed  CAS  Google Scholar 

  9. Rafflenbeul W, Nellessen U, Galvao P, Kreft M, Peters S, Lichtlen P. Progression and Regression der Koronarsklerose im angiographischen Bild. Z Kardiol 1984; 73 (Suppl 2): 33–40.

    PubMed  Google Scholar 

  10. Bruschke AV, Wijers TS, Kolsters W, Landmann J. The anatomic evaluation of coronary artery disease demonstrated by coronary angiography in 256 nonoperated patients. Circulation 1981; 63: 527–36.

    Article  PubMed  CAS  Google Scholar 

  11. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12: 56–62.

    Article  PubMed  CAS  Google Scholar 

  12. Gibson M, Stone P, Pasternak R, Sandor T, Rosner B, Sacks F. The natural history of coronary atherosclerosis using quantitative angiography: implications for regression trials. J Am Coll Cardiol 1991; 17 (Suppl A): 231A (Abstract).

    Article  Google Scholar 

  13. Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest 1991; 64: 5–15.

    PubMed  CAS  Google Scholar 

  14. Davies MJ. A macro and micro view of coronary vascular insult in inschaemic heart disease. Circulation 1990; 82 (Suppl 3): II 38–46.

    CAS  Google Scholar 

  15. Fuster V, Badimon L, Cohen M, Ambrose JA, Badimon JJ, Chesebro J. Insights into the pathogenesis of acute ischemic syndromes. Circulation 1988; 77: 1213–20.

    Article  PubMed  CAS  Google Scholar 

  16. Waters D, Hudon G, Lemarbre L, Francetich M, Lesperance J. Regression of coronary atherosclerosis: a prospective, quantitative angiographic study. J Am Coll Cardiol 1991; 17 (Suppl A): 231A (Abstract).

    Article  Google Scholar 

  17. Levin DC, Fallon JT. Significance of the angiographic morphology of localized coronary stenoses: histopathologic correlations. Circulation 1982; 66: 316–20.

    Article  PubMed  CAS  Google Scholar 

  18. Davies MJ, Thomas AC. Plaque fissuring - the cause of acute myocardial infarction, sudden ischaemic death and crescendo angina. Br Heart J 1985; 53: 363–73.

    Article  PubMed  CAS  Google Scholar 

  19. Ambrose JA, Winters SL, Arora RR, et al. Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 1986; 7: 472–8.

    Article  PubMed  CAS  Google Scholar 

  20. Hjemdahl-Monsen JA, Hjemdahl-Monsen CE, Borrico S, Gorlin R, Fuster V. Angiographic demonstration of a common link between unstable angina pectoris and non Q-wave acute myocardial infarction. Am J Cardiol 1988; 61: 244–7.

    Article  PubMed  Google Scholar 

  21. Davies MJ, Bland JM, Hangartner JR, Angelini A, Thomas AC. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J 1989; 10: 203–8.

    PubMed  CAS  Google Scholar 

  22. Waller BF. Coronary luminal shape and the arc of disease free wall: morphologic observations and clinical relevance. J Am Coll Cardiol 1985; 6: 1100–1.

    Article  PubMed  CAS  Google Scholar 

  23. Hangartner JR, Charleston AJ, Davies MJ, Thomas AC. Morphological charactertistics of clinically significant coronary artery stenosis in stable angina. Br Heart J 1986; 56: 501–8.

    Article  PubMed  CAS  Google Scholar 

  24. Crawford T, Levene CI. Medial thinning in atheroma. J Pathol Bacteriol 1953; 66: 19–23.

    Article  PubMed  CAS  Google Scholar 

  25. Isner JM, Donaldson RF, Fortin AH, Tischler A, Clarke RH. Attenuation of the media of coronary arteries in advanced atherosclerosis. Am J Cardiol 1986; 58: 937–9.

    Article  PubMed  CAS  Google Scholar 

  26. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371–5.

    Article  PubMed  CAS  Google Scholar 

  27. Stiel GM, Stiel LS, Schofer J, Donath K, Mathey DG. Impact of compensatory enlargement of atherosclerotic coronary arteries on angiographie assessment of coronary artery disease. Circulation 1989; 80: 1603–9.

    Article  PubMed  CAS  Google Scholar 

  28. Marcus ML, Armstrong ML, Heistad DD, Eastham CL, Mark AL. Comparison of three methods of evaluating coronary obstructive lesions: postmortem arteriography, pathologic examination and measurement of regional myocardial perfusion during maximal vasodilation. Am J Cardiol 1982; 49: 1699–706.

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz JN, Kong Y, Hackel DB, Bartel AG. Comparison of angiographic and postmortem finds in patients with coronary artery disease. Am J Cardiol 1975; 36: 174–8.

    Article  PubMed  CAS  Google Scholar 

  30. Hutchins GM, Bulkley BH, Ridolfi RL, Griffith LS, Lohr FT, Piasio MA. Correlation of coronary arteriograms and left ventriculograms with postmortem studies. Circulation 1977; 56: 32–7.

    Article  PubMed  CAS  Google Scholar 

  31. Vlodaver Z, Frech R, van Tassel RA, Edwards JE. Correlation of the antemortem coronary arteriogram and the postmortem specimen. Circulation 1973; 47: 162–9.

    Article  PubMed  CAS  Google Scholar 

  32. Thomas AC, Davies MJ, Dilly S, Dilly N, Franc F. Potential errors in the estimation of coronary arterial stenosis from clinical arteriography with reference to the shape of the coronary arterial lumen. Br Heart J 1986; 55: 129–39.

    Article  PubMed  CAS  Google Scholar 

  33. Freeman MR, Williams AE, Chisholm RJ, Armstrong PW. Intracoronary thrombus and complex morphology in unstable angina. Relation to timing of angiography and in-hospital cardiac events. Circulation 1989; 80: 17–23.

    Article  PubMed  CAS  Google Scholar 

  34. Gotoh K, Minamino T, Katoh O, et al. The role of intracoronary thrombus in unstable angina: angiographie assessment and thrombolytic therapy during ongoing anginal attacks. Circulation 1988; 77: 526–34.

    Article  PubMed  CAS  Google Scholar 

  35. Rehr R, Disciascio G, Vetrovec G, Cowley M. Angiographic morphology of coronary artery stenoses in prolonged rest angina: evidence of intracoronary thrombosis. J Am Coll Cardiol 1989; 14: 1429–37. Comment in: J Am Coll Cardiol 1989; 15: 1438–9.

    Google Scholar 

  36. Leung WH, Lee T, Stadius ML, Alderman EL. Quantitative measurements of apparently normal coronary segments in patients with coronary artery disease. J Am Coll Cardiol 1991; 17 (Suppl A): 230A (Abstract).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davies, M.J. (1993). A Pathologist’s view of quantitative coronary arteriography. In: Reiber, J.H.C., Serruys, P.W. (eds) Advances in Quantitative Coronary Arteriography. Developments in Cardiovascular Medicine, vol 137. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1854-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1854-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4819-4

  • Online ISBN: 978-94-011-1854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics