Skip to main content

Skeletal muscle blood flow

  • Chapter
  • 130 Accesses

Part of the Developments in Cardiovascular Medicine book series (DICM,volume 138)

Abstract

The ability of the skeletal muscle vasculature to meet the high metabolic requirements of the active skeletal muscle probably represents the most striking adaptation of the cardiovascular system to heavy exercise. Indeed, up to 90% of the increased cardiac output, which can reach 25–30 L/min, is distributed to the lower limbs during maximal treadmill or bicycle exercise [1]. Thus, while the cardiac output increases from rest by a factor of 4 to 5, blood flow to the skeletal muscle involved in exercise increases by a factor ranging from 15 to 20. In normal and diseased states, blood flow to skeletal muscle involved in exercise closely correlates with peak aerobic capacity. Moreover, measurement of skeletal muscle blood flow (SMBF) is critical to study the metabolism of the skeletal muscles [2]. However, studies of SMBF in man are few and only a handful of laboratories have been active in this area over the years [39]. This, by far, does not stem from a lack of interest in the skeletal muscle vasculature, but reflects the difficulties in measuring SMBF in normal subjects and in patients with cardiac disease. In addition, determination of SMBF during exercise has been hampered by our inability to quantify the amount of skeletal muscle mass actively participating in exercise. If 50% of the total muscle mass is active, the flow per 100 g or per kg is considerably lower than if only 30% of the total muscle is active. Thus, prior to reviewing the data currently available on SMBF in man, the advantages and limitations of the techniques used to measure SMBF will be briefly discussed.

Keywords

  • Skeletal Muscle
  • Maximal Exercise
  • Systemic Arterial Pressure
  • Severe Congestive Heart Failure
  • Peak Oxygen Uptake

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-1848-4_32
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   389.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-1848-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   499.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkow B, Neil E. Muscle circulation. In: Folkow B, Neil E (eds.), New York, London, Toronto: Oxford University Press, 1971:399–416.

    Google Scholar 

  2. Pernow B, Wahren JK, Zelterquist S. Studies on the peripheral circulation and metabolism in man. IV. Oxygen utilization and lactate formation in the legs of healthy young men during strenuous exercise. Acta Physiol Scand 1965;64:289–298.

    CrossRef  CAS  PubMed  Google Scholar 

  3. Jordfeldt L, Juhlin-Dannfelt A, Pernow B. et al. Determination of human leg blood flow: a thermodilution technique based on femoral venous bolus injection. Clin Sci Molec Med 1978;54:517–523.

    Google Scholar 

  4. Tonnesen KH, Sejrsen P. Washout of 133xenon after intravascular injection and direct measurement of blood flow in skeletal muscle. Scand J Clin Lab Invest 1970;25:71–81.

    CrossRef  CAS  PubMed  Google Scholar 

  5. Henriksen O, Amtorp O, Faris I. et al. Evidence for a local sympathetic venoarteriolar “reflex” in the dog hind leg. Circ Res 1983;52:534–542.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Sejrsen P, Tonnesen KH. Shunting by diffusion of inert gas in skeletal muscle. Acta Physiol Scand 1972;86:82–91.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Lingdbjerg IF, Andersen AM, Munck O. et al. The fat content of leg muscles and its influence on the 133xenon clearance method of blood flow measurement. Scand J Clin Lab Invest 1966;18:525–534.

    CrossRef  Google Scholar 

  8. Lassen NA, Lindbjerg I, Munck O. Measurement of blood flow through skeletal muscle by intramuscular injection of xenon133. Lancet 1984;1:686–689.

    Google Scholar 

  9. Kjellmer I, Lindbjerg I, Prerovsky I. et al. The relation between blood flow in an isolated muscle measured with the xenon133 clearance and a direct recording technique. Acta Physiol Scand 1967;69:69–78.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Fronek A, Ganz V. Measurement of flow in single blood vessels including cardiac output by local thermodilution. Circ Res 1960;8:175–182.

    CrossRef  Google Scholar 

  11. Ganz V, Hlavova A, Fronek A. et al. Measurement of blood flow in the femoral artery in man at rest and during exercise by local thermodilution. Circulation 1964;30:86–89.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Sorlie D, Myhre K. Determination of leg blood flow in man by thermodilution. Scand J Clin Lab Invest 1977;37:117–124.

    CAS  PubMed  Google Scholar 

  13. Wilson JR, Martin JL, Ferraro N. et al. Effect of hydralazine on perfusion and metabolism in leg during upright bicycle exercise in patients with heart failure. Circulation 1983;68:425–432.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Sullivan MJ, Beckley PD, Hanson KM. et al. In vivo validation of a thermodilution system designed to measure peripheral blood flow. Med Instrument 1987;19:38–40.

    Google Scholar 

  15. Sullivan MJ, Knight DJ, Higginbotham MB. et al. Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure. Circulation 1979;80:769–781.

    CrossRef  Google Scholar 

  16. Drexler H, Banhardt U, Meinertz T. et al. Contrasting peripheral short-term and long-term effects of converting enzyme inhibition in patients with congestive heart failure. A double-blind, placebo-controlled trial. Circulation 1989;79:491–502.

    CrossRef  CAS  PubMed  Google Scholar 

  17. Pernow B, Zelterquist S. A metabolic approach to the evaluation of the nutritive blood flow. Scand J Clin Lab Invest 1967;99(Suppl)90–94.

    CAS  Google Scholar 

  18. Ganz W, Tamura K, Marcus HS. et al. Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 1971;54:181–195.

    CrossRef  Google Scholar 

  19. Haggmark S, Biber B, Sjodin JG. et al. The continuous thermodilution method for measuring high blood flows. Scand J Clin Lab Invest 1982;42:315–332.

    CrossRef  CAS  PubMed  Google Scholar 

  20. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol 1985;366:233–249.

    CAS  PubMed  Google Scholar 

  21. LeJemtel TH, Maskin CS, Lucido D. et al. Failure to augment maximal limb blood flow in response to one-leg versus two-leg exercise in patients with severe heart failure. Circulation 1986;74:245–251.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Rowell LB, Saltin B, Kiens B. et al. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? Am J Physiol 1986;251:H1038–H1044.

    CAS  PubMed  Google Scholar 

  23. Tonnesen KH. Blood flow through muscle during rhythmic contraction measured by 133xenon. Scand J Clin Lab Invest 1963;16:646–654.

    CrossRef  Google Scholar 

  24. Clausen JP, Lassen NA. Muscle blood flow during exercise in normal man studied by the 133xenon clearance method. Cardiovasc Res 1971;5:245–254.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Mancini DM, Davis L, Wexler JP et al. Dependence of enhanced maximal exercise performance on increased peak skeletal muscle perfusion during long-term captopril therapy in heart failure. J Am Coll Cardiol 1987;10:845–850.

    CrossRef  CAS  PubMed  Google Scholar 

  26. Davis L, Wexler JP, Rabinowitz A et al. Data acquisition using a scintillation detector interfaced to a personal microcomputer. J Nucl Med 1985;26:85–87.

    CAS  PubMed  Google Scholar 

  27. Cerretelli P, Marconi C, Pendergast D et al. Blood flow in exercising muscles by 133xenon clearance and microsphere trapping. J Appl Physiol 1984;56:24–30.

    CAS  PubMed  Google Scholar 

  28. Barlow TE, Haigh AL, Walder DN. Evidence for two vascular pathways in skeletal muscle. Clin Sci 1961;20:367–385.

    CAS  PubMed  Google Scholar 

  29. Jorfeldt L, Wahren J. Leg blood flow during exercise in man. Clin Sci 1971;41:459–473.

    CAS  PubMed  Google Scholar 

  30. Corbally MT, Brennan MF. Non-invasive measurement of regional blood flow in man. Am J Surgery 1990;160:313–321.

    CrossRef  CAS  Google Scholar 

  31. Greenfield ADM, Whitney RJ, Mowbray JF. Methods for the investigation of peripheral blood flow. Br Med Bull 1963;19:101–109.

    CAS  PubMed  Google Scholar 

  32. Saltin B. Hemodynamic adaptations to exercise. Am J Cardiol 1985;55:42D–47D.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Sinoway L, Prophet S. Skeletal muscle metaboreceptor stimulation opposes peak metabolic vasodilation in humans. Circ Res 1990;66:1576–1584.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Grimby G, Haggendal E, Saltin B Local xenon133 clearance from the quadriceps muscle during exercise. J Appl Physiol 1967;22:305–310.

    CAS  PubMed  Google Scholar 

  35. Wahren J, Saltin B, Jorfeldt L et al. Influence of age on the local circulatory adaptation to leg exercise. Scand J Clin Lab Invest 1974;33:79–86.

    CrossRef  CAS  PubMed  Google Scholar 

  36. Granath A, Johnson B, Strandell T. Circulation in healthy old men studied by right heart catheterization at rest and during exercise in supine and sitting positions. Acta Med Scand 1964;176:425–437.

    CrossRef  CAS  PubMed  Google Scholar 

  37. Zelis R, Longhurst J, Capone RJ et al. A comparison of regional blood flow and oxygen utilization during dynamic forearm exercise in normal subjects and patients with congestive heart failure. Circulation 1974;50:137–143.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Mancini DM, LeJemtel TH, Factor S et al. Central and peripheral components of cardiac failure. Am J Med 1986;80(Suppl 2B):2–13.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Maskin CS, Forman R, Sonnenblick EH et al. Failure of dobutamine to increase exercise capacity despite hemodynamic improvement in severe chronic heart failure. Am J Cardiol 1983;51:177–182.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Wilson JR, Martin JL, Schwartz D et al. Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow. Circulation 1984;69:1079–1087.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Martin WH, Berman WI, Buckey JC et al. Effects of active muscle mass size in cardiopulmonary responses to exercise in congestive heart failure. J Am Coll Cardiol 1989;14:683–694.

    CrossRef  PubMed  Google Scholar 

  42. Lewis SF, Taylor FW, Graham KM et al. Cardiovascular responses to exercise as functions of absolute and relative workload. J Appl Physiol 1983;54:1314–1323.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lejemtel, T.H., Katz, S.D. (1993). Skeletal muscle blood flow. In: Salmasi, AM., Iskandrian, A.S. (eds) Cardiac Output and Regional Flow in Health and Disease. Developments in Cardiovascular Medicine, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1848-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1848-4_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4816-3

  • Online ISBN: 978-94-011-1848-4

  • eBook Packages: Springer Book Archive