Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 138))

Abstract

The primary function of the coronary circulation is to supply the heart’s metabolic needs. Thus, any discussion of the physiology of the coronary circulation must begin by emphasizing the unusually close relationship between myocardial metabolism and perfusion. Figure 30.1 schematically illustrates this relationship. Because the heart has a limited and short-lived capacity for anaerobic metabolism, its steady-state metabolic needs can be considered solely in terms of oxidative metabolism. Myocardial oxygen uptake can be expressed as the product of coronary blood flow and the coronary arterial-venous oxygen difference. One unique feature of the coronary circulation is its high degree of oxygen extraction under basal conditions. Normally, about 65% of the oxygen in coronary arterial blood is removed in its passage through the myocardial capillary bed; little additional oxygen can be removed from this blood. Accordingly, changes in myocardial oxygen demand require changes in coronary flow that are quantitatively similar.

The authors thank April L. Jackson for careful preparation in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parmley WW, Tyberg JV. Determination of good myocardial oxygen demand. Prog Cardiol 1976;5:19–36.

    Google Scholar 

  2. Klocke FJ, Ellis AK. Control of coronary blood flow. Ann Rev Med 1980;31:489–508.

    Article  CAS  PubMed  Google Scholar 

  3. Marcus ML. The coronary circulation in health and disease. New York: McGraw-Hill, 1983.

    Google Scholar 

  4. Feigl EO. Coronary physiology. Physiol Rev 1983;63:1–205.

    CAS  PubMed  Google Scholar 

  5. Folkow B. Description of the myogenic hypothesis. Circ Res 1964;15:1–279.

    Article  Google Scholar 

  6. Bassenge E, Busse R. Endothelial modulation of coronary tone. Prog Cardiovasc Dis 1988;30:349–380.

    Article  CAS  PubMed  Google Scholar 

  7. Cannon RO, Epstein SE. Microvascular angina as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol 1988;61:1338–1343.

    Article  PubMed  Google Scholar 

  8. Wicker P, Tarazi RC. Coronary blood flow in left ventricular hypertrophy: a review flow in left ventricular hypertrophy: a review of experimental data. Eur Heart J 1982;3(Suppl A):111–118.

    PubMed  Google Scholar 

  9. Weiss MB, Ellis K, Sciacca RR. Myocardial blood flow in congestive and hypertrophic cardiomyopathy: relationship to peak wall stress and mean velocity of circumferential fiber shortening. Circulation 1976;54:484–494.

    Article  CAS  PubMed  Google Scholar 

  10. Nitenberg A, Foult JM, Antony I. et al. Coronary flow and resistance reserve in patients with chronic aortic regurgitation, angina pectoris and normal coronary arteries. J Am Coll Cardiol 1988;11:478–486.

    Article  CAS  PubMed  Google Scholar 

  11. Bove A A, Lowenthal DT. Exercise medicine. Physiological principles and clinical applications. Orlando: Academic Press, 1983.

    Google Scholar 

  12. Freudenberg H, Lichtlen PR. The normal wall segment in coronary stenosis. A postmortem study. Z Kardiol 1981;70:863–869.

    CAS  PubMed  Google Scholar 

  13. Vladover Z, Edwards JE. Pathology coronary atherosclerosis. Prog Cardiovasc Dis 1971;114:256–274.

    Article  Google Scholar 

  14. Brown BG. Coronary vasospasm: observations linking the clinical spectrum of ischemic heart disease to the dynamic pathology of coronary atherosclerosis. Arch Inter Med 1981;41:716–722.

    Article  Google Scholar 

  15. Young MA, Vetner SF. Regulation of large coronary arteries. Circ Res 1986;:579–596.

    Google Scholar 

  16. Bove AA, Dewey JD. Effects of serotonin and histamine on proximal distal coronary vasculature in dogs: comparison with alpha-adrenergic stimulation. Am J Cardiol 1983;52:133–139.

    Article  Google Scholar 

  17. Yokoyama M, Henry PD. Sensitization of isolated canine coronary arteries to calcium ions after exposure to cholesterol. Circ Res 1979;45:479–486.

    Article  CAS  PubMed  Google Scholar 

  18. Tomita T, Ezaki M, Miwa M. et al. Rapid and reversible inhibition by low density lipoprotein of the endothelium-dependent relaxation to hemostatic substances in porcine coronary arteries. Circ Res 1990;66:18–27.

    Article  CAS  PubMed  Google Scholar 

  19. Shattil SJ, Bennett J, Coleman RW. et al. Platelet hypersensitivity induced by cholesterol. J Clin Invest 1975;55:636.

    Article  CAS  PubMed  Google Scholar 

  20. Furchgott RF, Zawadzki JV The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–376.

    Article  CAS  PubMed  Google Scholar 

  21. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J 1989;3:2007–2018.

    CAS  PubMed  Google Scholar 

  22. Langille BL, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 1986;231:405–407.

    Article  CAS  PubMed  Google Scholar 

  23. Ludmer PL, Selwyn AP, Shook TL. et al. Paradoxical acetylcholine-induced coronary artery constriction in patients with coronary artery disease. N Engl J Med 1986;308:1046–1051.

    Article  Google Scholar 

  24. Cox RH. Mechanical aspects of larger coronary arteries. In: Santamore WP, Bove AA (eds.), Coronary artery disease: etiology; hemodynamic consequences; drug therapy; clinical implications. Baltimore: Urban and Schwarzenberg, 1982:19–38.

    Google Scholar 

  25. Brown BG, Josephson MA, Petersen RB. et al. Intravenous dipyridamole combined with isometric handgrip for near-maximal acute increase in coronary flow in patients with coronary artery disease. Am J Cardiol 1981;48:1077–1085.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen MV, Kirk ES. Differential response of large and small coronary arteries to nitroglycerin and angiotensin: autoregulation and tachyphylaxis-Circ Res 1973;33:445–453.

    CAS  Google Scholar 

  27. Toda N. Response of isolated monkey coronary arteries to catecholamines and to transmural electrical stimulation. Circ 1981;49:1228–1236.

    Article  CAS  Google Scholar 

  28. Zuberbuhler RC, Bohr DF. Responses of coronary smooth muscle to catecholamines. Circ Res 1965;16:431–440.

    Article  CAS  PubMed  Google Scholar 

  29. Brum JM, Sufan Q, Dewey J et al. Effects of angiotensin and ergonovine on large and small coronary arteries in the intact dog. Basic Res Cardiol 1985;80:333–342.

    Article  CAS  PubMed  Google Scholar 

  30. Winbury MM, Howe BB, Hefner MA. Effect of nitrates and other coronary dilators on large and small coronary vessels: an hypothesis for the mechanism of action of nitrates. J Pharmacol Exp Ther 1065; 168:70–95.

    Google Scholar 

  31. Klocke FJ. Coronary blood flow in man. Prog Cardiovasc Dis 1976;19:117–166.

    Article  CAS  PubMed  Google Scholar 

  32. White CW, Wilson RF, Marcus ML. Methods of measuring myocardial blood flow in humans. Prog Cardiovasc Dis 1988;31:79–94.

    Article  CAS  PubMed  Google Scholar 

  33. Hoffman JIE, Buckberg GD. Transmural variations in myocardial perfusion. Prog Cardiol 1976;5:37–86.

    Google Scholar 

  34. Rouleau J, Boerboom LE, Surjadhana A et al. The role of autoregulation and tissue diastolic pressures in the transmural distribution of left ventricular blood flow in anesthetized dogs. Circ Res 1979;45:804–815.

    Article  CAS  PubMed  Google Scholar 

  35. Mirsky I. Left ventricular stresses in the intact human heart. Biophys J 1969;9:189.

    Article  CAS  PubMed  Google Scholar 

  36. Yoran C, Covell JW, Ross J Jr. Structural basis for the ascending limb of left ventricular function. Circ Res 1973;32:297.

    Article  CAS  PubMed  Google Scholar 

  37. Monroe RG, Gamble WJ, LaFarge CG. Transmural coronary venous O2 saturations in normal and isolated hearts. Am J Physiol 1975;228:318.

    CAS  PubMed  Google Scholar 

  38. Rovai D, L’Abbate A, Lombardi M. et al. Nonuniformity of the transmural distribution of coronary blood flow during the cardiac cycle. In vivo documentation by contrast echocardiography. Circulation 1989;79:179–187.

    Article  CAS  PubMed  Google Scholar 

  39. Chilian WM, Eastham CL, Layne SM. et al. Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 1988;29:17–38.

    Article  Google Scholar 

  40. Wusten B, Buss DD, Deist H. Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res Cardiol 1977;72:636.

    Article  CAS  PubMed  Google Scholar 

  41. Kety SS, Schmidt CF. The determination of cerebral blood in man by the use of nitrous oxide in low concentration. Am J Physiol 1945;143:53–66.

    CAS  Google Scholar 

  42. Gantz W, Tamura K, Marcus HS. Measurement of coronary sinus blood flow by continuous thermodilution in man. Circ 1971;44:181–195.

    Article  Google Scholar 

  43. Vogel RA, Bates ER, O’Neill WW et al. Coronary flow reserve measurement. During cardiac catheterization. Arch Intern Med 1984;144:1773–1776.

    Article  CAS  PubMed  Google Scholar 

  44. Winbury MM. Proximal and distal coronary arteries. In: Santamore WP, Bove AA (eds.), Coronary artery disease: etiology; hemodynamic consequences; drug therapy; clinical implications. Baltimore Urban and Schwarzenberg, 1982;63–77.

    Google Scholar 

  45. Klocke FJ, Ellis AK. Physiology of the coronary circulation. In: Parmley WW, Chatterjee K (ed.), Cardiology, Volume 1, Physiology, pharmacology, diagnosis. Philadelphia: J,B. Lippincott Company, 1988: Chapter 7.

    Google Scholar 

  46. Rubio R, Berne RM. Regulation of coronary blood flow. Prog Cardiovasc Dis 1975;18:105–126.

    Article  CAS  PubMed  Google Scholar 

  47. Cook BH, Granger HJ, Taylor AE. Metabolism of coronary arteries and arterioles. A histochemical study. Microvasc Res 1977;14:145–159.

    Article  CAS  PubMed  Google Scholar 

General references

  • Berne RM, Rubio R. Coronary circulation. In: Berne RM (ed.), Handbook of physiology, section 2, the cardiovascular system. Bethesda: American Physiological Society, 1979:873.

    Google Scholar 

  • Feigl EO. Coronary physiology. Physiol Rev 1983;63:1.

    CAS  PubMed  Google Scholar 

  • Marcus ML. The coronary circulation in health and disease. New York: McGraw-Hill, 1983.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Santamore, W.P., Corin, W.J. (1993). The coronary circulation. In: Salmasi, AM., Iskandrian, A.S. (eds) Cardiac Output and Regional Flow in Health and Disease. Developments in Cardiovascular Medicine, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1848-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1848-4_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4816-3

  • Online ISBN: 978-94-011-1848-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics