Neutral Impurity Disordering of Quantum Well Waveguide Devices

Part of the NATO ASI Series book series (NSSE, volume 226)


The neutral impurities boron and fluorine have been studied as species for impurity induced disordering. In the GaAs/AlGaAs system fluorine disordered multiple quantum well waveguide structures exhibited blue shifts of up to 100 meV in the absorption edge (representing complete disordering) accompanied by substantial changes, > 1%, in the refractive index. The absorption coefficient in partially disordered structures at near band-edge wavelengths was as low as 4.7 dB cm-1. Integrated extended cavity lasers have been fabricated with low losses (19 ± 8.4dB cm-1) in the passive waveguide. Disordering of GaInAs/AlGaInAs and GaInAs/GaInAsP quantum well structures lattice matched to InP has also been investigated. The temperature stability of as-grown phosphorus-quaternary material is poor, with blue shifts of the exciton peak occurring at temperatures greater than 500°C, but the aluminium-quaternary is stable to at least 650°C. Large blue shifts (up to 90 meV for phosphorus quaternary and 45 meV for aluminium quaternary samples) were observed in the fluorine-implanted samples. The estimated loss in fluorine-disordered phosphorus quaternary samples is typically around 8 dB cm−1.


Quantum Well Multiple Quantum Well Quantum Well Structure Extended Cavity Neutral Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.G. Deppe and N. Holonyak Jr:, J. Appl. Phys., 64, R93–R113 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    J.H. Marsh, S.I. Hansen, A.C.Bryce and R.M. De La Rue, Optical and Quantum Electronics 23, S941 (1991)CrossRefGoogle Scholar
  3. 3.
    M. Suzuki, H. Tanaka, S. Akiba, Y. Kushiro, J. Lightwave Technol 6, 779 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    M. O’Neill, A.C. Bryce, J.H. Marsh, R.M. De La Rue, J.S. Roberts and C. Jeynes, Appl. Phys. Lett., 55, 1373 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    M. O’Neill, J.H. Marsh, R.M. De La Rue, J.S. Roberts and R. Gwilliam, Electron Lett, 26, 1613–5 (1990).CrossRefGoogle Scholar
  6. 6.
    R.L. Thornton, W.J. Mosby and T.L. Paoli, IEEE J.Lightwave Technol., LT-6, 786 (1987).ADSGoogle Scholar
  7. 7.
    J.P. van der Ziel, M. Ilegems and R.M. Mikulyak, Appl. Phys. Lett., 67, 735 (1976).CrossRefGoogle Scholar
  8. 8.
    S.I. Hansen, J.H. Marsh, J.S. Roberts and R. Gwilliam, Appl. Phys. Lett., 58, 1398–1400 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    S.I. Hansen, J.H. Marsh and J.S. Roberts, IEE Proc Pt J (Optoelectronics), 138, 309–312 (1991)..CrossRefGoogle Scholar
  10. 10.
    I.J. Pape, P. LI Kam Wa, J.P.R. David, P.A. Claxton and P.N. Robson, Electron. Lett., 24, 1217–1218 (1988).CrossRefGoogle Scholar
  11. 11.
    I.J. Pape, P. Li Kam Wa, D.A. Roberts, J.P.R. David, P.A. Claxton and P.N. Robson, GaAs and Related Compounds 1988 (Inst Phys Conf Ser No 96) 397.Google Scholar
  12. 12.
    M. Razeghi, O. Archer and F. Launay, Semicond. Sci. Technol., 2, 793 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    K. Nakashima, Y. Kawaguchi, Y. Kawamura, Y. Imamura, Appl. Phys. Lett. 52, 1383–1385 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    I.J. Pape, P. Li Kam Wa, J.P.R. David, P.A. Claxton, P.N. Robson and D. Sykes, Electron. Lett., 24, 910–911 (1988).CrossRefGoogle Scholar
  15. 15.
    M.A. Bradley, F.H. Julien, J.P. Gilles, Y. Gao, E.V.K. Rao, M. Razeghi and F. Omnes, Electron. Lett., 26, 209 (1990).CrossRefGoogle Scholar
  16. 16.
    B. Tell, B.C. Johnson, J.L. Zyzkind, J.M. Brown, J.W. Sulhoff, K.F. BrownGoebeler, B.I. Miller and U. Koren, Appl. Phys. Lett., 52, 1428–1430 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    H. Sumida, H. Asahi, S. Jae Yu, K. Asami, S. Gonda, H. Tanoue. Appl. Phys. Lett., 54, 520–522 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    B. Tell, J. Shah, P.M. Thomas, K.F. Brown-Goebeler, A.D. Giovanni, B.I. Miller and U. Koren, Appl. Phys.Lett., 54, 1570 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    A.C. Bryce, J.H. Marsh, R. Gwilliam and R.W. Glew, IEE Proc Part J (Optoelectronics), 138, 87–90 (1991).CrossRefGoogle Scholar
  20. 20.
    J.H. Marsh, S.A. Bradshaw, A.C. Bryce, R. Gwilliam and R.W. Glew, J. Electron. Mat., 20, 973–978, 1991ADSCrossRefGoogle Scholar
  21. 21.
    R.G. Walker, Electron Lett, 21(4), 208, 1857 (1988)Google Scholar
  22. 22.
    P. Dansas, J. Appl. Phys. 58 (1985) 2212.ADSCrossRefGoogle Scholar
  23. 23.
    W.J. Moore, R.L. Hawkins and B.V. Shanabrook, Physica 146B (1987) 65.Google Scholar
  24. 24.
    D.W. Fischer and P.W. Yu, J. Appl. Phys. 59 (1986) 1952ADSCrossRefGoogle Scholar
  25. 25.
    Y. Makita and S. Gonda, Appl.Phys. Lett. 17 (1976) 333.Google Scholar
  26. 26.
    B. Tell and K.F. Brown-Goebeler, J. Appl. Phys. 62 813 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    J. Werner, T.P. Lee, E. Kapon, E. Colas, N.G. Stoffel, S.A. Schwarz, L.C. Schwarz and N.C. Andreadakis, Appl. Phys. Left., 57, 810 (1990).ADSCrossRefGoogle Scholar
  28. 28.
    P.W.A. Mcllroy, A. Kurobe and Y. Uematsu, IEEE J Quantum Electron, QE-21, 1958 (1985).ADSGoogle Scholar
  29. 29.
    S.R. Andrew, J.H. Marsh, M.C. Holland and A.H. Kean, Photonics Tech. Lett, May 1992.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringThe UniversityGlasgowScotland, UK

Personalised recommendations