Multiple Quantum Well (MQW) Modulators

Part of the NATO ASI Series book series (NSSE, volume 226)


Multiple Quantum Wells (MQWs) have been shown to have properties that are different from the simple bulk semiconductors that are their constituents. One of the most useful is a large electroabsorption effect which can be utilized to make optical intensity modulatorsl. In addition, the degrees of freedom presented to a device designer by MQWs have been shown to allow other interesting effects, such as a blue-shift superlattice2 and the barrier reservoir and quantum well electron transfer structure (BRAQWETS)3.4. In this chapter, we will describe some of the underlying physics behind these effects, and demonstrate how MQWs can be used for optoelectronic modulators and other devices.


Insertion Loss Multiple Quantum Well Electric Field Profile Electroabsorption Modulator Incident Optical Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas H Wood, J Lightwave Technol., 6, 743 (1988).CrossRefGoogle Scholar
  2. 2.
    J Bleuse, P Voisin, M Allovan and M Quillec, Appl. Phys. Lett, 53, 2632 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    M Wegener, J E Zucker, T Y Chang, N J Sauer, K L Jones and D S Chemla, Phys. Rev. B41, 3097 (1990).ADSGoogle Scholar
  4. 4.
    J E Zucker, M Wegener, K L Jones, T Y Chang, N Sauer, and D S Chemla, Appl. Phys. Lett. 56, 1951 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    T H Wood, C A Burrus, D A B Miller, D S Chemla, T C Damen, A C Gossard, and W Wiegmann, Appl. Phys. Lett. 44, 16 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    D A B Miller, D S Chemla, T C Damen, A C Gossard, W Wiegmann, T H Wood and C A Burrus, Phys. Rev. B32, 1043 (1985).ADSGoogle Scholar
  7. 7.
    C Alibert, S Gaillard, J A Brum, G Bastard, P Frijlink, and M Erman, Solid State Commun. 53, 457 1985).ADSCrossRefGoogle Scholar
  8. 8.
    C M Gee, G D Thurmond, and H W Yen, presented at the Topical Meeting on Integrated and Guided-Wave Optics, Atlanta, GA, February, 1986, talk THAA3.Google Scholar
  9. 9.
    T H Wood, C A Burrus, D A B Miller, D S Chemla, T C Damen, A C Gossard, and W Wiegmann, IEEE J Quant. Electron. QE-21, 117 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    T H Wood, C B Burrus, R S Tucker, J S Weiner, D A B Miller, D S Chemla, T C Damen, A C Gossard, and W Wiegmann,.Electron. Lett. 21, 693 (1985).Google Scholar
  11. 11.
    R H Yan, R J Simes, L A Coldren, and A C Goddard, Appl. Phys, Lett. 56, 1626 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    T H Wood, E C Can, C A Burrus, B I Miller, and U Koren, Electron. Lett.24, 840 (1988).CrossRefGoogle Scholar
  13. 13.
    T H Wood, R W Tkach, and A R Chraplyvy, Appl. Phys. Lett. 50, 798 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    T H Wood, E C Carr, C A Burrus, R S Tucker, T H Chiu, W T Tsang, Electron. Lett. 23, 540 (1987).Google Scholar
  15. 15.
    K Wakita, I Kotaka, O Mitomi, H Asai, Y Kawamura, and M Naganuma, presented at CLEO, Anaheim, Calif., May, 1990, paper CTUC6.Google Scholar
  16. 16.
    F Koyama and K Iga, Electron. Lett. 21, 1065 (1985).CrossRefGoogle Scholar
  17. 17.
    Rod C Alferness, IEEE Trans. Microwave Theory and Techniques MTT-30, 1121 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    C H Henry, J Quant. Electron QE-18, 259 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    K Wakita, Y Yoshikuni, M Makao, Y Kawamura, and H Asahi, Japan. J. Appl. Phys. 26, L1629 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    J E Zucker, K L Jones, M G Young, B I Miller, and U Korne, Appl. Phys. Lett. 55, 2280 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    T H Wood, E C Carr, B L Kasper, R A Linke, C A Burrus, and K L Walker, Electron. Lett. 22, 528 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    Thomas H Wood, Elizabeth Carr, Charles A Burrus Jr, Jill Henry, Arthur C Gossard and John H English, Electron. Lett. 23, 916 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    K B Nichols, B E Burke, B H Aull, W D Goodhue, B F Gramstorff, C D Hoyt, and A Vera, Appl. Phys. Lett. 52, 1116 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    D A B Miller, D S Chemla, T C Damen, T H Wood, C A Burrus Jr, A C Gossard, and W Wiegmann, J Quant, Electron. QE-21, 1462 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    P Wheatley, M Whitehead, J E Midwinter, P Mistry, M A Pate, and J S Roberts, Opt. Lett. 12, 784 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    Yuichi Kawamura, Koichi Wakita, Yuzo Yosbikuni, Yoshio Itaya, and Hajime Asahi, J Quant, Electron. QE-23, 915 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    H Soda, M Furutsu, K Sato, N Okazaki, S Yamazaki, H Nishimoto, and H Ishikawa, Electron. Lett. 26, 9 (1990).CrossRefGoogle Scholar
  28. 28.
    D A B Miller, D S Chemla, D J Eilenberger, P W Smith, A C Gossard, and W T Tsang, Appl. Phys. Lett. 41, 679 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    U Koren, B I Miller, T L Koch, G Eisenstein, R S Tucker, I Bar-Joseph, and D S Chemla, Appl. Phys. Lett. 51, 1132 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    M Suzuki, H Tanaka, and S Akiba, Electron. Lett. 24, 1271 (1988).Google Scholar
  31. 31.
    T H Wood, J Z Pastalan, C A Burrus, B C Johnson, B I Miller, J L de Miguel, U Koren and M G Young, Appl. Phys. Lett. (in press).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  1. 1.AT & T Bell LaboratoriesCrawford Hill LaboratoryHolmdelUSA

Personalised recommendations