Advertisement

LiNbO3 Devices

Chapter
  • 220 Downloads
Part of the NATO ASI Series book series (NSSE, volume 226)

Abstract

LiNbO3 integrated optical devices have now been studied for more than 15 years. Research has been conducted in many laboratories belonging to universities as well as to industrial or governmental institutions. Several companies around the world are now offering pigtailed packaged components for switching, modulation and sensor applications. The reason for the success of LiNbO3 comes from several attractive properties of this material such as good electrooptical, acoustooptical and non linear coefficients and excellent transmission characteristics. In this paper, an overview of LiNbO3 guided wave device technology will be presented. The presentation will concentrate on electrooptical devices as their evolution gives a good understanding of the basic configurations involved and of the different possible applications of the technology.

Keywords

Directional Coupler Interaction Length Basic Configuration Channel Waveguide Modulation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.P. Kaminow and J.R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    R.V. Schmidt and I.P. Kaminow, Appl. Phys. Lett. 25, 458 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    R.C. Alferness anb L.L. Buhl, Opt. Lett. 5, 473 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    J.L. Jackel, Opt. Commun. 3, 82 (1982).Google Scholar
  5. 5.
    S. Miyasawa, R. Guglielmi and A. Carenco, Appl. Phys. Lett. 31, 842 (1977).CrossRefGoogle Scholar
  6. 6.
    B.Chen and A.C. Pastor. Appl.Phys.Left. 30, 570 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    R.J. Esdale, Appl. Phys. Lett. 33, 733 (1978).Google Scholar
  8. 8.
    J.L. Jackel, C.E. Rice and J.J Veselka, Appl. Phys. Lett. 47, 607 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    P. G. Suchosky, T.K. Findakly and F. J. Leonberger, Opt. Lett. 13, 1050 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    M. De Micheli et al., Opt. Lett. 8, 114 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    D. Marcuse, IEEE J. QE-18, 393 (1982).CrossRefGoogle Scholar
  12. 12.
    D. G. Ramer, IEEE J. QE-18, 386 (1982).CrossRefGoogle Scholar
  13. 13.
    K. Komasu et al., IOOC’ 87, Reno, paper WK.5 (1987).Google Scholar
  14. 14.
    W.W. Rigrod and I.P. Kaminow, Proc. IEEE 51, 137 (1963).CrossRefGoogle Scholar
  15. 15.
    M. Papuchon et al., Appl. Phys. Lett. 27, 289, (1975).ADSCrossRefGoogle Scholar
  16. 16.
    H. Kogelnik and R.V. Shcmidt, IEEE J. QE-12, 396 (1976).CrossRefGoogle Scholar
  17. 17.
    S. Thaniyavarn, Proc. SPIE conference 716, 23 (196) Cambridge.Google Scholar
  18. 18.
    Y. Bourbin et al., Proc. SPIE conference 864, 116 (1987) Cannes.Google Scholar
  19. 19.
    M. Kondo et al., IEEE Trans. MTT-30, 1747 (1982).Google Scholar
  20. 20.
    L. McCaughan and G.A. Bogert, Appl. Phys. Lett., 47, 348 (1985).ADSCrossRefGoogle Scholar
  21. 21.
    A. Neyer, W. Mevenkamp and B. Kretzshmann, IGWO’86, Paper WAA2 Atlanta.Google Scholar
  22. 22.
    G. A. Bogert, E.J. Murphy and R.T. Ku, IEEE J. LT-4, 1542 (1986).Google Scholar
  23. 23.
    P. Granestrand et al., Elect. Lett. 22, 816 (1986).CrossRefGoogle Scholar
  24. 24.
    M. Izutsu, H. Haga and T. Sueta, IEEE J. LT-1, 285 (1983).Google Scholar
  25. 25.
    C. M. Gee, G. D. Thurmond and G. W. Yen, Appl. Phys. Lett 43, 998 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    S. K. Korotky et al., Appl. Phys. Lett., 23, 1631 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    D. W. Dolfi, M. Nazarathy and R. L. Jungerman, Elect. Lett., 24, 529 (1988).CrossRefGoogle Scholar
  28. 28.
    K. Kamano et al., Elect. Lett., 25, 1383 (1989).CrossRefGoogle Scholar
  29. 29.
    S. K. Korotky, J.J. Veselka, OFC’90, Paper TUH2 San Francisco.Google Scholar
  30. 30.
    Y. Bourbin et al., Appl. Phys. Lett., 53, 1908 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    R. C. Alferness and L. L. Buhl, Appl. Phys. Lett., 40, 861 (1982).ADSCrossRefGoogle Scholar
  32. 32.
    R. C. Alferness, IEEE J. QE-17, 946 (1981).CrossRefGoogle Scholar
  33. 33.
    F. J. Leonberger, C. E. Woodward and R. A. Becker, Appl. Phys. Lett., 40, 565 (1982).ADSCrossRefGoogle Scholar
  34. 24.
    H. C. Lefevre et al., Proc. SPIE conference 25, 717 (1986).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  1. 1.Laboratoire Central de Recherches Thomson CSFDomaine de CorbevilleOrsayFrance

Personalised recommendations