Skip to main content

LiNbO3 Devices

  • Chapter
Waveguide Optoelectronics

Part of the book series: NATO ASI Series ((NSSE,volume 226))

  • 284 Accesses

Abstract

LiNbO3 integrated optical devices have now been studied for more than 15 years. Research has been conducted in many laboratories belonging to universities as well as to industrial or governmental institutions. Several companies around the world are now offering pigtailed packaged components for switching, modulation and sensor applications. The reason for the success of LiNbO3 comes from several attractive properties of this material such as good electrooptical, acoustooptical and non linear coefficients and excellent transmission characteristics. In this paper, an overview of LiNbO3 guided wave device technology will be presented. The presentation will concentrate on electrooptical devices as their evolution gives a good understanding of the basic configurations involved and of the different possible applications of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.P. Kaminow and J.R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).

    Article  ADS  Google Scholar 

  2. R.V. Schmidt and I.P. Kaminow, Appl. Phys. Lett. 25, 458 (1974).

    Article  ADS  Google Scholar 

  3. R.C. Alferness anb L.L. Buhl, Opt. Lett. 5, 473 (1980).

    Article  ADS  Google Scholar 

  4. J.L. Jackel, Opt. Commun. 3, 82 (1982).

    Google Scholar 

  5. S. Miyasawa, R. Guglielmi and A. Carenco, Appl. Phys. Lett. 31, 842 (1977).

    Article  Google Scholar 

  6. B.Chen and A.C. Pastor. Appl.Phys.Left. 30, 570 (1977).

    Article  ADS  Google Scholar 

  7. R.J. Esdale, Appl. Phys. Lett. 33, 733 (1978).

    Google Scholar 

  8. J.L. Jackel, C.E. Rice and J.J Veselka, Appl. Phys. Lett. 47, 607 (1982).

    Article  ADS  Google Scholar 

  9. P. G. Suchosky, T.K. Findakly and F. J. Leonberger, Opt. Lett. 13, 1050 (1988).

    Article  ADS  Google Scholar 

  10. M. De Micheli et al., Opt. Lett. 8, 114 (1983).

    Article  ADS  Google Scholar 

  11. D. Marcuse, IEEE J. QE-18, 393 (1982).

    Article  Google Scholar 

  12. D. G. Ramer, IEEE J. QE-18, 386 (1982).

    Article  Google Scholar 

  13. K. Komasu et al., IOOC’ 87, Reno, paper WK.5 (1987).

    Google Scholar 

  14. W.W. Rigrod and I.P. Kaminow, Proc. IEEE 51, 137 (1963).

    Article  Google Scholar 

  15. M. Papuchon et al., Appl. Phys. Lett. 27, 289, (1975).

    Article  ADS  Google Scholar 

  16. H. Kogelnik and R.V. Shcmidt, IEEE J. QE-12, 396 (1976).

    Article  Google Scholar 

  17. S. Thaniyavarn, Proc. SPIE conference 716, 23 (196) Cambridge.

    Google Scholar 

  18. Y. Bourbin et al., Proc. SPIE conference 864, 116 (1987) Cannes.

    Google Scholar 

  19. M. Kondo et al., IEEE Trans. MTT-30, 1747 (1982).

    Google Scholar 

  20. L. McCaughan and G.A. Bogert, Appl. Phys. Lett., 47, 348 (1985).

    Article  ADS  Google Scholar 

  21. A. Neyer, W. Mevenkamp and B. Kretzshmann, IGWO’86, Paper WAA2 Atlanta.

    Google Scholar 

  22. G. A. Bogert, E.J. Murphy and R.T. Ku, IEEE J. LT-4, 1542 (1986).

    Google Scholar 

  23. P. Granestrand et al., Elect. Lett. 22, 816 (1986).

    Article  Google Scholar 

  24. M. Izutsu, H. Haga and T. Sueta, IEEE J. LT-1, 285 (1983).

    Google Scholar 

  25. C. M. Gee, G. D. Thurmond and G. W. Yen, Appl. Phys. Lett 43, 998 (1983).

    Article  ADS  Google Scholar 

  26. S. K. Korotky et al., Appl. Phys. Lett., 23, 1631 (1987).

    Article  ADS  Google Scholar 

  27. D. W. Dolfi, M. Nazarathy and R. L. Jungerman, Elect. Lett., 24, 529 (1988).

    Article  Google Scholar 

  28. K. Kamano et al., Elect. Lett., 25, 1383 (1989).

    Article  Google Scholar 

  29. S. K. Korotky, J.J. Veselka, OFC’90, Paper TUH2 San Francisco.

    Google Scholar 

  30. Y. Bourbin et al., Appl. Phys. Lett., 53, 1908 (1988).

    Article  ADS  Google Scholar 

  31. R. C. Alferness and L. L. Buhl, Appl. Phys. Lett., 40, 861 (1982).

    Article  ADS  Google Scholar 

  32. R. C. Alferness, IEEE J. QE-17, 946 (1981).

    Article  Google Scholar 

  33. F. J. Leonberger, C. E. Woodward and R. A. Becker, Appl. Phys. Lett., 40, 565 (1982).

    Article  ADS  Google Scholar 

  34. H. C. Lefevre et al., Proc. SPIE conference 25, 717 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Papuchon, M. (1992). LiNbO3 Devices. In: Marsh, J.H., De La Rue, R.M. (eds) Waveguide Optoelectronics. NATO ASI Series, vol 226. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1834-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1834-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4810-1

  • Online ISBN: 978-94-011-1834-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics