Advertisement

Design and Modelling of Passive and Active Optical Waveguide Devices

Chapter
Part of the NATO ASI Series book series (NSSE, volume 226)

Abstract

Over the last decade optical waveguide devices have penetrated into many optoelectronic systems. We just have to think of the widespread use today of optical fibres and of semiconductor laser diodes - probably the two most important waveguide devices in terms of production volume. In the research labs we do already find a much wider class of waveguide devices, including passive structures (power dividers, mode splitters, wavelength demultiplexers etc.), electrooptic devices (modulators and switches), advanced laser diodes, non-linear optical devices (bistable structures) and so on. These devices will mainly find applications in advanced communication systems, but also in optical interconnect and optical recording.

Keywords

Optical Waveguide Effective Index Couple Mode Theory Coupling Length Slab Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [3.1]
    Streifer W., Kapron E., “Application of the equivalent-index method to DH diode lasers”, Applied Optics, 1979, 18, pp.3724–3725.ADSCrossRefGoogle Scholar
  2. [3.2]
    [3.2] Fereira L.G., Pudensi M.A.A., “ Waveguiding in a dielectric medium varying slowly in one transverse direction”, J.Opt.Soc.Am., 1981, 71 (11), pp.1377–1380.ADSGoogle Scholar
  3. [3.3]
    Buus J., “Application of the effective-index method to nonplanar structures”, IEEE Journal of Quantum Electronics, 1984, QE-20 (10), pp.1106–1108.ADSCrossRefGoogle Scholar
  4. [3.4]
    [3.4] Walpita L.M., “Calculation of approximate propagation characteristics of any given two-dimensional optical waveguide”, Electronics Letters, 1985, 21 (23), pp.1075–1076.ADSCrossRefGoogle Scholar
  5. [3.5]
    Chang K.S., “Analysis of optical fibers by the effective-index method”, Applied Optics, 1986, 25 (3), pp.348–354.ADSCrossRefGoogle Scholar
  6. [3.6]
    Chang K.S., “Dual effective-index method for the analysis of rectangular dielectric waveguides”, Applied Optics, 1986, 25 (13), pp.2169–2174.ADSCrossRefGoogle Scholar
  7. [3.7]
    Kim C.M., Jung B.G., Lee C.W., “Analysis of dielectric rectangular waveguides by modified effective index method”, Electronics Letters, 1986, 22 (6), pp.296–298.CrossRefGoogle Scholar
  8. [3.8]
    Marcatili A.J., Hardy A.A., “The azimuthal effective index method”, IEEE Journal of Quantum Electronics, 1988, QE-24 (5), pp.766–774.ADSCrossRefGoogle Scholar
  9. [3.9]
    Van Der Tol J.J.G.M., Baken N.H.G., “Correction to effective index method for rectangular dielectric waveguides”, Electronics Letters, 1988, 24 (4), pp.207–208.CrossRefGoogle Scholar
  10. [3.10]
    Burke S.V.,“Spectral index method applied to rib and strip-loaded directional couplers”,IEE Proceedings, Pt J, 1990, 137, pp.7-ADSCrossRefGoogle Scholar
  11. [3.11]
    Stern M.S., Kendall P.C., Mcllroy P.W.A.,“Analysis of the spectral index method for vector modes of rib waveguides”, IEE Proceedings, Pt J, 1990, 137, pp.21–26.CrossRefGoogle Scholar
  12. [3.12]
    [3.12] Elewaut F., “Wave propagation in monomode optical fibres and integrated optical structures” (in Dutch), Ph.D. dissertation, 1987, Laboratory of Electromagnetism and Acoustics, University of Gent.Google Scholar
  13. [3.13]
    Stewart W.J., Jennings A., “A simultaneous iteration algorithm for real matrices”, ACM Transactions on Mathematical Software, 1981, 7 (2), pp.184–198.CrossRefGoogle Scholar
  14. [3.14]
    Stern M.S., “Semivectorial polarised finite-difference method for optical waveguides with arbitrary index profiles”, IEE Proceedings, Pt J, 1988, 135, pp.56–63.CrossRefGoogle Scholar
  15. [3.15]
    Rachman B.M.A, Davies J.B., “Finite-Element analysis of optical and microwave waveguide problems”, IEEE Trans. on Microwave Theory and Tech., 1984, MTT-32, pp.20–26.ADSCrossRefGoogle Scholar
  16. [3.16]
    Young T.P., Smith P., “Finite-element analysis of the electro-optic effect in optical waveguides” Proceedings of the 4th European Conference on Integrated Optics, ECIO87, (Ed. C.D.Wilkinson and J.Lamb), pp.164–167.Google Scholar
  17. [3.17]
    Young T.P., “Design of integrated optical circuits using finite elements”, IEE Proceedings, Part A, 1988, 135 (3), pp.135–144.CrossRefGoogle Scholar
  18. [3.18]
    Vasallo C., Wang Y.-H., “A new semi-rigorous analysis of rib waveguides”, to be publishedGoogle Scholar
  19. [3.19]
    Robertson M.J., Ritchie S., Dayan P., “Semiconductor waveguides: analysis of optical propagation in single rib structures and directional couplers”, IEE Proceedings, Pt J, 1985, 132, pp.336–342.CrossRefGoogle Scholar
  20. [3.20]
    Lagasse P.E. et al (Cost 216, Working Group I) “Comparison of different modelling techniques for longitudinally invariant integrated optical waveguides”, lEE Proceedings Pt J, 1989, 136 pp.273–280.ADSGoogle Scholar
  21. [3.21]
    Benson T.M., Kendall P.C., Stern M.S., Quinney D.A.,“New results for rib wave-guide propagation constants”, IEE Proceedings, Pt J, 1989, 136, pp.97–102.Google Scholar
  22. [3.22]
    Kendall P.C., Robertson M.J., McIlroy P.W.A., Ritchie S., Adams M.J., “Advancesin rib waveguide analysis using the weighted index method or the method of moments”, IEE Proceedings, Pt J, 1990, 137, pp.27–29.Google Scholar
  23. [3.23]
    Van Ackere M., “Integration of GaAs/AlGaAs light sources and waveguides in planar guided-wave optical interconnections”, (in Dutch), Ph.D. dissertation, 1990, Laboratoryof Electromagnetism and Acoustics, University of Gent.Google Scholar
  24. [3.24]
    Lee D.,“ Electromagnetic principles of integrated optics”, Wiley, New York 1986.Google Scholar
  25. [4.1]
    Feit M.D., Fleck J.A., “Light propagation in graded-index optical fibers”, Applied Optics, 1978, 17 (24), pp.3990–3997.ADSCrossRefGoogle Scholar
  26. [4.2]
    Van Roey J., van der Donk J., Lagasse P.E., “Beam Propagation Method: analysis and assessmment”, J. Opt. Soc. Amer., 1981, 71 (7), pp.803–810.ADSCrossRefGoogle Scholar
  27. [4.3]
    Thylen L., “The Beam Propagation Method: an analysis of its applicability”, Optical and Quantum Electr., 1983, 15, pp.433–439.ADSCrossRefGoogle Scholar
  28. [4.4]
    Lagasse P.E., Baets R., “The beam propagating method in integrated optics”, in “Hybrid formulation of wave propagation and scattering” (Edited by L.B.Felsen, M.Nijhof Publ. 1984), NATO ASI series, pp.375–393.Google Scholar
  29. [4.5]
    Lagasse P.E., Baets R., “Application of propagating beam methods to electromagnetic and acoustic wave propagation problems: a rewiev”, Radio Science, 1987, 22, (7), pp.1225–1233.ADSCrossRefGoogle Scholar
  30. [4.6]
    Thylen L., “Theory and applications of the beam propagation method”, Proc. of the OSA Meeting on Numerical Simulations and Analysis in Guided-wave Optics and Optoelectronics, Houston, February 1989, pp.20–23.Google Scholar
  31. [4.7]
    Baets R., Lagasse P.E., “Loss calculation and design of arbitrarily curved integrated-optic waveguides”, J.Opt.Soc.Amer., 1983, 73, pp.177–182.ADSCrossRefGoogle Scholar
  32. [4.8]
    Baets R., Lagasse P.E., “Calculation of radiation loss in integrated-optic tapers and Y- junctions”, Applied Optics, 1982, 21 (11), pp.1972–1978ADSCrossRefGoogle Scholar
  33. [4.9]
    Baets R., Lagasse P.E. “Longitudinal static-field model for DH-lasers”, Electronics Letters, 1984, pp.41–42.Google Scholar
  34. [4.10]
    Baets R., Van de Capelle J.-P., Lagasse P.E., “Longitudinal analysis of semiconductor lasers with low-reflectivity facets”, IEEE Journal of Quantum Electronics, 1985, QE-21, pp.693–699.ADSCrossRefGoogle Scholar
  35. [4.11]
    Thylen L., Wright E.M., Stegeman G.I., Seaton C.T., Moloney J.V., “Beam-propagation Method analysis of a nonlinear coupler”, Optics Letters 1986, 11, pp.590–593.CrossRefGoogle Scholar
  36. [4.12]
    Feit M.D., Fleck J.A., “Three-dimensional analysis of a directional coupler exhibiting a Kerr nonlinearity”, IEEE Journal of Quantum Electr., 1988, 24, pp.2081–2086.ADSCrossRefGoogle Scholar
  37. [4.13]
    Kaczmarski P., Lagasse P. E., “Bidirectional Beam Propagation Method”, Electronics Letters, 1988, 24, pp.675–676.ADSCrossRefGoogle Scholar
  38. [4.14]
    Kaczmarski P., Baets R., Franssens G., Lagasse P. E., “Extension of Bidirectional Beam Propagation Method to TM polarisation and application to laser facet reflectivity”, Electronics Letters, 1989, 25, pp. 716–717.CrossRefGoogle Scholar
  39. [4.15]
    Kaczmarski P., “Extensions of the Beam Propagation Method and applications in the analysis of guided electromagnetic and elastic waves”, Ph. D. dissertation, 1990, Laboratory of Electromagnetism and Acoustics, University of Gent.Google Scholar
  40. [4.16]
    Kaczmarski P., Van de Capelle J.-P., Lagasse P.E., Meynart R.,“Design of an integrated electro-optic switch in organic polymers”, IEE Proceedings, Pt.J, 1989, 136,pp.152–158.CrossRefGoogle Scholar
  41. [4.17]
    Thylen L., Yevick D., “Beam Propagation Method in anisotropic media”, Applied Optics, 1982, 21, pp.2751–2754.ADSCrossRefGoogle Scholar
  42. [4.18]
    Menendez-Valdes P., Fernandez S.,Muriel M.A., Franssens G.R., Kaczmarski P. “A vectorial Beam Propagation Method for the simulation of depolarization devices”, to be publishedGoogle Scholar
  43. [4.19]
    Saitoh T., Mukai T., Mikami O., “Theoretical analysis and fabrication of antireflection coatings on laser-diode facets”, Journal of Lightwave Technology, 1985, LT-3, pp.288–293.ADSCrossRefGoogle Scholar
  44. [4.20]
    Atternas L., Thylen L., “Single-layer antireflection coatings of semiconductor lasers: polarisation properties and the influence of the laser structure”, Journal of Lightwave Technology, 1989, LT-7, pp.426–430.ADSCrossRefGoogle Scholar
  45. [4.21]
    Van Tomme E., Van Daele P., Baets R. and Lagasse P., “Integrated-optic devices based on non-linear optical polymers”, submitted to the IEEE Journ. of Quantum Electronics.Google Scholar
  46. [5.1]
    A. Snyder, J. Love, Optical Waveguide Theory, Chapman and Hall, London, 1983 [5.2] A. Yariv, Optical Electronics, Holt, Rinehart and Winston, New York 1985Google Scholar
  47. [5.2]
    A. Yariv, Optical Electronics, Holt, Rinehart and Winston, New York 1985Google Scholar
  48. [5.3]
    A. Hardy, W. Streifer, “Coupled mode theory of parallel waveguides”, IEEE J. Lightwave Tech., 1985, 3, pp.1135–1146ADSCrossRefGoogle Scholar
  49. [5.4]
    E. Marcatili, “Improved coupled mode equations for dielectric waveguides”, IEEE J. Quantum Electronics, 1986, 22, pp.988–993ADSCrossRefGoogle Scholar
  50. [5.5]
    H. A. Haus, W. Huang, S. Kawakami, N. Whitaker, “Coupled Mode Theory of Optical Waveguides”, IEEE J. Lightwave Tech., 1987, 5, pp.16–23ADSGoogle Scholar
  51. [5.6]
    D. Marcuse, “Directional Couplers Made of Nonidentical Asymmetric Slabs. Part II: Grating-Assited Couplers”, IEEE J Lightwave Tech., 1987, 5, pp.268–273ADSCrossRefGoogle Scholar
  52. [5.7]
    W. Huang, H. Haus, “Power exchange in grating-assisted couplers”, IEEE J. Lightwave Tech., 1989, 7, pp.920–924ADSCrossRefGoogle Scholar
  53. [6.1]
    K. David, Internal report Univ. of Gent/LEAGoogle Scholar
  54. [7.1]
    R. Baets, J.P. Van de Capelle and P. Vankwikelberge, “The modelling of semiconductor laser diodes”, Annales des Telecommunications, 1988, 43, 7, pp. 423–433ADSGoogle Scholar
  55. [7.2]
    P. Vankwikelberge, J.P Van de Capelle, R. Baets, B.M. Verbeek, J. Opschoor, “Local normal mode analysis of index-guided AlGaAs lasers with mode filter”, IEEE J. Quantum Electronics, 1987, 23, pp. 730–737ADSGoogle Scholar
  56. [7.3]
    R. Baets, P.E. Lagasse, “Longitudinal static field model for DH lasers”, Electr. Letters, 1984, 20, pp.41–42ADSGoogle Scholar
  57. [7.4]
    R. Baets, J.P. Van de Capelle, P.E. Lagasse, “Longitudinal analysis of semiconductor lasers with low reflectivity facets”, IEEE J. Quantum Electronics, 1985, 21, pp.693–699ADSGoogle Scholar
  58. [7.5]
    P. Vankwikelberge, G. Morthier, R. Baets, “CLADISS, a longitudinal multi-mode model for the analysis of the static, dynamic and stochastic behaviour of diode lasers with distributed feedback”, to be published in J. Quantum ElectronicsGoogle Scholar
  59. [7.6]
    P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, C. Frederiksz, “Analysis of the carrier induced FM response of DFB lasers: theoretical and experimental case studies”, IEEE J. Quantum Electronics, 1989, 25, pp.2239–2254ADSCrossRefGoogle Scholar
  60. [7.7]
    G. Morthier, P. Vankwikelberge, K. David, R. Baets, “Improved performance of AR-coated DFB lasers by the introduction of gain-coupling”, IEEE Phot. Tech. Lett., 1990, 2, pp.170–172ADSCrossRefGoogle Scholar
  61. [7.8]
    K. David, G. Morthier, P. Vankwikelberge, R. Baets, “Yield analysis of DFB lasers with various facet reflectivities and degrees of gain coupling”, Electr. Lett., 1990, 26, pp.238–239Google Scholar
  62. [7.9]
    G. Morthier, K. David, P. Vankwikelberge, R. Baets, “A new DFB-laser diode with reduced spatial hole burning”, IEEE Phot. Tech. Lett., 1990, 2, pp.388–390ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  1. 1.Laboratory of Electromagnetism and AcousticsUniversity of GentGentBelgium

Personalised recommendations