Advertisement

Materials for Waveguide Optoelectronics

Chapter
  • 229 Downloads
Part of the NATO ASI Series book series (NSSE, volume 226)

Abstract

Waveguide optoelectronics, by definition, implies the availability and exploitation of refractive index difference. Accordingly, this introductory chapter on materials for waveguide optoelectronics is concerned both with describing and analysing the factors which contribute to the refractive index of materials and the various ways in which the refractive index may be modified in order to form waveguides or changed after waveguide formation.

Keywords

Refractive Index Lithium Niobate Refractive Index Change Relative Dielectric Constant Dope Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    J. Bell and C.N. Ironside: ‘Semiconductor-doped glass waveguide electro-absorption modulator’, Electron. Lett., 26, (1990), pp.976–977 and also W.S.O. Rodden, C.M. Sotomayor Tones, C.N. Ironside, D. Cotter and H.P. Girdlestone: ‘Linear and nonlinear optical properties of CdSexS1-x microcrystallites’, Superlattices and Microstructures, 9, (1991), pp.421–426.Google Scholar
  2. 2).
    J. Gowar: ‘Optical Communication Systems’, Prentice-Hall, London, (1984).Google Scholar
  3. 3).
    L. Ward: ‘The Optical Constants of Bulk Materials and Films’, Adam Hilger, Bristol UK and Philadelphia USA, (1988).Google Scholar
  4. 4).
    S. Adachi: ‘Model dielectric constants of GaP, GaAs, GaSb, InP, InAs and InSb’, Phys. Rev. B, 35, (1987), pp.7454–7463.MathSciNetADSCrossRefGoogle Scholar
  5. 5).
    A.N. Pikhtin and A.D. Yas’kov: ‘Dispersion of the refractive index of semiconductors with diamond and zinc-blende structures’, Sov. Phys. Semicond., 12, (1978), pp.622–626.Google Scholar
  6. 6).
    S. Adachi: ‘GaAs, AlAs and AlxGa1-xAs: Material parameters for use in research and device appplications’, J. Appl. Phys., 58, (1985), pp.Rl-R29.CrossRefGoogle Scholar
  7. 7).
    S. Adachi: ‘Optical properties of AlxGa1-xAs alloys’, Phys. Rev. B, 38, (1988), pp.12345–12352.ADSCrossRefGoogle Scholar
  8. 8).
    S. Adachi: ‘Refractive indices of III-V compounds: Key properties of InGaAsP relevant to device design’, J. Appl. Phys., 53, (1982), pp.5863–5869.ADSCrossRefGoogle Scholar
  9. 9).
    M.A. Afromowitz, ‘Refractive index of Ga1-xAlxAs’, Solid State Communications, 15, (1974), pp.59–62.ADSCrossRefGoogle Scholar
  10. 10).
    D.M. Jenkins: ‘Optical properties of AlxGa1-xAs’, J. Appl. Phys., 68, (1990), pp.1848–1853.ADSCrossRefGoogle Scholar
  11. 11).
    I.H. Malitson: ‘Interspecimen comparison of the refractive index of fused silica’, J. Opt. Soc. Amer, 55, (1965), pp.1205–1209.ADSCrossRefGoogle Scholar
  12. 12).
    M.V. Hobden and J. Warner :’The temperature dependence of the refractive indices of pure lithium niobate’, Phys.Lett., 22, (1966), pp.243–244.ADSCrossRefGoogle Scholar
  13. 13).
    J.W. Fleming: ‘Material dispersion in lightguide glasses’, Electron. Lett., 14, (1978), pp. 326–328.Google Scholar
  14. 14).
    G.A. Arvidsson: ‘Lithium niobate waveguides for electrooptical and nonlinear optical applications’, thesis, Institute of Optical Research, Stockholm, (1987).Google Scholar
  15. 15).
    F. Laurell: ‘Second-harmonic and sum-frequency generation in lithium niobate waveguides’, thesis, Institute of Optical Research, Stockholm, (1990).Google Scholar
  16. 16).
    F. Laurell and G. Arvidsson: ‘Frequency doubling in Ti:MgO: LiNbO3 channel waveguides’, J.Opt.Soc.Am.B, 5, (1988), pp.292–299.ADSCrossRefGoogle Scholar
  17. 17).
    F. Zernicke and J.E. Midwinter: ‘Applied Nonlinear Optics’, J. Wiley &Sons, New York, (1973).Google Scholar
  18. 18).
    D.F. Nelson and R.M. Mikulyak: ‘Refractive indices of congruently melting lithium niobate’, J.Appl.Phys., 45, (1974), pp.3688–3689.ADSCrossRefGoogle Scholar
  19. 19).
    D.S. Smith, H.D. Riccius and R.P. Edwin: ‘Refractive indices of lithium niobate’, Optics Communications, 17, (1976), pp.332–335.ADSCrossRefGoogle Scholar
  20. 20).
    G.J. Edwards and M. Lawrence: ‘A temperature-dependent dispersion equation for congruently grown lithium niobate’, Optical and Quantum Electronics, 16, (1984), pp.373–375.CrossRefGoogle Scholar
  21. 21).
    M.R. Shenoy and R.M. De La Rue: ‘On the refractive index of rutile’, submitted for publication.Google Scholar
  22. 22).
    W.L Bond: ‘Measurement of the refractive indices of several crystals’, J.App.Phys., 36, (1965), pp.1674–1677.ADSCrossRefGoogle Scholar
  23. 23).
    E.D. Palik: ‘Handbook of Optical Constants of Solids’, Academic Press, Orlando, (1985).Google Scholar
  24. 24).
    R.V. Schmidt and I.P. Kaminow: ‘Metal diffused optical waveguides in LiNbO3’, Appl.Phys.Lett., 25, (1974), pp.458–460.ADSCrossRefGoogle Scholar
  25. 25).
    T.P. Pearsall, S. Chiang and R.V. Schmidt: ‘Study of titanium diffusion in lithium niobate low-loss optical waveguides by x-ray photoelectron spectroscopy’, J.Appl.Phys., 47, (1976), pp.4794–4797.ADSCrossRefGoogle Scholar
  26. 26).
    K. Sugii, M. Fukuma and H. Iwasaki: ‘A study on titanium diffusion in LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods’, J.Mat.Sci., 13, (1978), pp.523–533.ADSCrossRefGoogle Scholar
  27. 27).
    R.J. Esdaile: ‘Titanium doped lithium niobate for electro-optic devices’, thesis, University of Glasgow, (1979).Google Scholar
  28. 28).
    J.L. Jackel, R.V. Ramaswamy and S.P. Lyman: ‘Elimination of out-diffused surface guiding in titanium-diffused LiNbO3’, Appl.Phys.Lett., 38, (1981), pp.509–511.ADSCrossRefGoogle Scholar
  29. 29).
    J.L. Jackel: ‘Suppression of outdiffusion in titanium diffused LiNbO3’, J.Opt.Commun., 3, (1982), pp.82-.Google Scholar
  30. 30).
    R.J. Esdaile: ‘Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3’, J.Appl.Phys., 33, (1978), pp.733–734.Google Scholar
  31. 31).
    R.A. Becker: ‘Methods of characterizing photorefractive susceptibility of LiNbO3 waveguides’, Proc.SPIE, 578, (1985), pp.12–18.CrossRefGoogle Scholar
  32. 32).
    R.J. Esdaile: ‘Comment on“Characterization of TiO2, LiNb3O8 and (Ti0.65 Nb0.35 )O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication”’, J.Appl.Phys., 58, (1985), pp.1070–1071.ADSCrossRefGoogle Scholar
  33. 33).
    G. Arvidsson, K. Bergwall and A. Sjoberg: ‘Processing of titanium-diffused lithium niobate waveguide devices and waveguide characterisation’, Thin Solid Films, 126, (1985), p.177–184.ADSCrossRefGoogle Scholar
  34. 34).
    J. Ctyroky, M. Hofman. J. Janta and J. Schrofel: ‘3-D analysis of LiNbO3:Ti channel waveguides and directional couplers’, IEEE JQE, QE-20, (1984), pp.400–409.CrossRefGoogle Scholar
  35. 35).
    K-K. Wong, ‘Integrated optical waveguides and devices fabricated by proton exchange: a review’, Proc SPIE, 993, (1988), pp.13–25.CrossRefGoogle Scholar
  36. 36).
    R.M. De La Rue, A. Loni, A. Lambert, J.F. Duffy, S.M. Al-Shukri, Y.L. Kopylov and J. M. Winfield: ‘Proton-exchange in lithium niobate and lithium tantalate’, Proc. Fourth European Conference on Integrated Optics, ECIO 87, Glasow, (1987).Google Scholar
  37. 37).
    M.A. Milbrodt et al: ‘A tree-structured 4x4 switch array in lithium niobate with attached fibers and proton-exchanged polarizers’, IGWO, (1988), Santa Fe, paper MF9, pp.152–155, Opt.Soc.Amer.Google Scholar
  38. 38).
    C. Canali, A. Carnera, G. Della Mea, P. Mazzoldi, S.M. Al-Shukri, A.C.G. Nutt and R.M. De La Rue: ‘Structural characterization of proton exchanged LiNbO3 optical waveguides’, J.Appl.Phys., 59, (1986), pp.2643–2649; A. Loni, G.Hay, R.M. De La Rue and J.M. Winfield: ‘Proton-exchanged LiNbO3 waveguides: The effects of post exchange annealing and buffered melts as determined by infra-red spectroscopy, optical waveguide measurements and hydrogen isotopic exchange reactions’, J.LightwaveTech., 7, (1989), pp.911–919 and R.G. Wilson, S.W. Novak, J.M. Zavada, A. Loni and R.M. De La Rue: ‘Secondary ion mass spectrometry depth profiling of proton exchanged LiNbO3 waveguides’, J.Appl.Phys., 66, (1989), pp. 6055–6058.Google Scholar
  39. 39).
    E. Lallier, J.-P Pocholle, M. Papuchon, Q. He, M. De Micheli, D.B. Ostrowsky, C.Grezes-Besset and E. Pelletier: ‘Integrated Nd:MgO:LiNbO3 FM mode-locked waveguide laser’, Electron.Lett, 27, (1991), pp.936–937.ADSCrossRefGoogle Scholar
  40. 40).
    R.W. Keys, A. Loni and R.M. De La Rue: ‘Cerenkov second-harmonic generation in proton-exchanged lithium niobate waveguides’, Jour.Mod.Opt., 37, (1990), pp.545–553.ADSCrossRefGoogle Scholar
  41. 41).
    R.W. Keys, A. Loni, R.M. De La Rue, C.N. Ironside, J.H. Marsh, B.J. Luff and P.D. Townsend: ‘Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment’, Electron.Lett., 26, (1990), pp.180–190; M. Yamada and M. Kishima: ‘Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithigraphy at toom temperature’, Electron.Lett., 27, (1991), pp. 828–829; and M. Fujimura, T. Suhara and H. Nishihara: ‘Ferroelectric-domain inversion induced by SiO2 cladding for LiNbO3 waveguide SHG’, Electron. Lett., 27, (1991), pp.1207–1209.Google Scholar
  42. 42).
    K.K. Wong; ‘High performance proton-exchange LiTaO3 devices for integrated optical sensor applications’, Proc.SPIE, 1177, (1989), pp.40–47ADSGoogle Scholar
  43. 43).
    A. Loni, R.M. De La Rue and J.M. Winfield: ‘Very low-loss proton-exchange LiNbO3 waveguides with a substantially restored electrooptic effect’, IGWO, (1988), paper MD3, pp.84–87 and S. McMeekin and R.M. De La Rue: ‘Novel transverse electrooptic phase modulator realised in titanium-diffused and proton-exchanged LiNbO3’, Electron.Lett., 25,(1989), pp.853–854.Google Scholar
  44. 44).
    W. Hou, W. Hua, Y. Zhang and H. Tan: ‘Possible mechanism for increase of extraordinary refractive index in proton-exchanged LiNbO3 waveguides’, Electron.Lett., 27, (1991), p.755.CrossRefGoogle Scholar
  45. 45).
    R.V. Ramaswamy and R. Srivastava: ‘Ion-exchanged glass waveguides: a review’, IEEE JLT, 6,(1988), pp.984–1001.Google Scholar
  46. 46).
    J. Bell and C.N. Ironside: ‘Channel optical waveguides directly written in glass with an electron beam’, Electron. Lett., 27, (1991), pp.448–450.Google Scholar
  47. 47).
    J.D. Bierlein, A. Ferrettii, L.H. Brixner an W.Y. Hsu: ‘Fabrication and characterization of optical waveguides in KTiOPO4’, Appl.Phys.Lett., 50, (1987), pp.1216–1218.ADSCrossRefGoogle Scholar
  48. 48).
    W.P. Risk: ‘Fabrication and characterization of planar ion-exchanged KTiOPO4 waveguides for frequency doubling’, Appl.Phys.Lett., 58, (1991), pp.19–21.ADSCrossRefGoogle Scholar
  49. 49).
    R.K. Williamson and A.C. Beer (Editors): ‘Optical Properties of III-V Compounds’, Semiconductors and Semimetals series, Vol. 3, Academic Press, New York, (1967).Google Scholar
  50. 50).
    R.G. Hunsperger, ‘Integrated Optics: Theory and Technology’, Springer, Berlin, 3rd Edition, (1991).Google Scholar
  51. 51).
    C.W. Higginbotham, M. Cardona and F.H. Pollak, ‘Intrinsic piezobirefringence of Ge, Si and GaAs’, Phys. Rev., 184, (1969), pp.821–829.ADSCrossRefGoogle Scholar
  52. 52).
    H.C.Casey and M.B. Panish: ‘Heterostructure Lasers’, Academic Press, New York, (1978).Google Scholar
  53. 53).
    D.D. Sell, H.C. Casey and K.W. Wecht: ‘Concentration dependence of the refactive index for n-and p-type GaAs between 1.2 and 1.8 eV’, J.Appl.Phys., 45, (1974), pp.2650–2657 and H.C. Casey, D.D. Sell and K.W. Wecht: ‘Concentration dependence of the absorption coefficient for n-and p-type GaAs between 1.3 and 1.6 eV’, J.Appl.Phys., 46, (1975), pp.250–257.Google Scholar
  54. 54).
    J. Zoroofchi and J.K. Butler: ‘Refractive index of n-type GaAs’, J.Appl.Phys, 44, (1973), pp.3697–3699.ADSCrossRefGoogle Scholar
  55. 55).
    J.T. Milek and M. Neuberger: ‘Linear Electrooptic Modulator Materials’, Plenum, New York, (1972).Google Scholar
  56. 56).
    R.S. Weis and T.K. Gaylord: ‘Lithium niobate: Summary of physical properties and crystal structure’, Appl.Phys.A, 37, (1985), pp.191–203.ADSCrossRefGoogle Scholar
  57. 57).
    J. Faist and F.-K. Reinhart: ‘Phase modulation in GaAs/A1GaAs double heterostructures (I.Theory and II.Experiment)’, J.Appl.Phys., 67, (1990), pp.6998–7012.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations