Advertisement

Abstracts from Poster Session

Chapter
  • 219 Downloads
Part of the NATO ASI Series book series (NSSE, volume 226)

Abstract

A polarization controller has two function, i.e. polarization change and adjustment of the phase difference between the TE and TM components. Both functions can be realized using the electro-optic effect. This effect requires an electric field which to some extend overlaps the optical field. For the realization of an electric field in InGaAsP a pn-junction is realized by locally diffusion of Zn, resulting in p-type InP in intrinsic n-type InP. A reverse-biased electric field in the lateral direction results in a TE-TM conversion, whereas a transverse field yields a phase change for the TE component. Combining these two fields gives the possibility to create the desired polarization state from a given input polarization state. Since the phase difference between the TE and TM component changes as a function of the propagated distance, the polarity of the electric field is changed every time the relative phase changes by π (after propagation over length Lπ), requiring a conversion section that is subdivided into subsections each having length Lπ. Subdividing these subsections yields the possibility to tune the device.

Keywords

Ridge Waveguide Channel Waveguide Slab Waveguide Beam Propagation Method Grin Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.M. Davis and M.C. Gower, Appl. Phys. Lett., 55, (2), 112 (1989)ADSCrossRefGoogle Scholar
  2. 1.
    J. Webjorn et al, IEEE Photon. Technol. Lett. 1, (1989), pp. 316–319ADSCrossRefGoogle Scholar
  3. 2.
    J. Wegjorn et al, IEEE J. Lightwave Technol. LT-7, (1989), pp. 1597–1600ADSCrossRefGoogle Scholar
  4. 3.
    E.J. Lim et al, Topical Meeting on Nonlinear Guided-Wave Phenomena, (1989), PD3Google Scholar
  5. 1.
    K. Blow, B. Nelson, Opt. Lett. 13, 1026 (1988)ADSCrossRefGoogle Scholar
  6. 2.
    P.N. Kean, X. Zhu, D.W. Crust, R.S. Grant, N. Langford and W. Sibbett, Opt. Lett. 14, 39 (1989)ADSCrossRefGoogle Scholar
  7. 3.
    J. Mark, L.Y. Liu, K.L. Hall, H.A. Haus and E.P. Ippen, Opt. Lett. 14, 48 (1989)ADSCrossRefGoogle Scholar
  8. 4.
    E.P. Ippen, H.A. Haus and L.Y. Liu, JOSA B 6, 1736 (1989)ADSGoogle Scholar
  9. 5.
    L.Y. Liu, J.M. Huxley, E.P. Ippen and H.A. Haus, Opt. Lett. 15, 553 (1990)ADSCrossRefGoogle Scholar
  10. 1.
    D. Burns and W. Sibbett, Electronics Letters 26, 505 (1990)CrossRefGoogle Scholar
  11. 2.
    D. Burns and W. Sibbett, in Technical Digest of Conference on Lasers and ElectroOptics (Optical Society of America, Washington D.C., 1990), paper CFR5Google Scholar
  12. 1.
    R.S. Grant, P.N. Kean, D. Burns and W. Sibbett, “Passive coupled-cavity mode-locked color-center lasers”, submitted to Optics Letters, Sept. 1990Google Scholar
  13. 1.
    W. Sibbett, 1990 Topical Meeting on Ultrafast Phenomena, Monterey, (Optical Society of Americal, Washington DC, 1990) paper MA 1.Google Scholar
  14. 2.
    J. Goodberlet, J. Wang, J.G. Fujimoto and P.A. Schulz, Opt. Lett. 14. 1125 (1989)ADSCrossRefGoogle Scholar
  15. 1.
    M. Belanger and G.L. Yip, “Novel Ti:LiNbO3 linear mode confinement modulator”, Electron. Lett., vol. 22, n°5, (1986), pp. 252–253ADSCrossRefGoogle Scholar
  16. 2.
    M. Belanger and G.L. Yip, “A novel Ti:LiNbO3 ridge waveguide linear mode confinement modulator fabricated by reactive ion-beam etching”, Journal of Lightwave Tech., LT-5, 9, (1987), pp. 1252–1257ADSCrossRefGoogle Scholar
  17. 3.
    A. Neyer, W. Mevenkamp, L. Thylen and B. Lagerstrom, “A BPM analysis of active and passive waveguide crossings”, Journal of Lightwave Tech. LT-3, (1985), pp. 635–642ADSCrossRefGoogle Scholar
  18. 4.
    L. Thylen and P. Granestrand, “Integrated optic electrooptic device electrode analysis: the influence of buffer layers”, Journal Opt. Comm., Vol. 7, n°1, (1986), pp. 1114Google Scholar
  19. 5.
    M.A. Sekerka-Bajbus, G.L. Yip and N. Goto, “BPM design optimization and experimental improvement of a Ti:LiNbO3 ridge waveguide linear mode confinement modulator”, To appear in Journal of Lightwave Tech., vol. 8, n°11, (1990)Google Scholar
  20. 1.
    A. Perales et al, Electronic Letters, vol. 26, n°4, pp. 236–237, Feb. 1990CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringUniversity of GlasgowGlasgowScotland

Personalised recommendations