Skip to main content

Abstracts from Poster Session

  • Chapter
Waveguide Optoelectronics

Part of the book series: NATO ASI Series ((NSSE,volume 226))

  • 281 Accesses

Abstract

A polarization controller has two function, i.e. polarization change and adjustment of the phase difference between the TE and TM components. Both functions can be realized using the electro-optic effect. This effect requires an electric field which to some extend overlaps the optical field. For the realization of an electric field in InGaAsP a pn-junction is realized by locally diffusion of Zn, resulting in p-type InP in intrinsic n-type InP. A reverse-biased electric field in the lateral direction results in a TE-TM conversion, whereas a transverse field yields a phase change for the TE component. Combining these two fields gives the possibility to create the desired polarization state from a given input polarization state. Since the phase difference between the TE and TM component changes as a function of the propagated distance, the polarity of the electric field is changed every time the relative phase changes by π (after propagation over length Lπ), requiring a conversion section that is subdivided into subsections each having length Lπ. Subdividing these subsections yields the possibility to tune the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.M. Davis and M.C. Gower, Appl. Phys. Lett., 55, (2), 112 (1989)

    Article  ADS  Google Scholar 

  2. J. Webjorn et al, IEEE Photon. Technol. Lett. 1, (1989), pp. 316–319

    Article  ADS  Google Scholar 

  3. J. Wegjorn et al, IEEE J. Lightwave Technol. LT-7, (1989), pp. 1597–1600

    Article  ADS  Google Scholar 

  4. E.J. Lim et al, Topical Meeting on Nonlinear Guided-Wave Phenomena, (1989), PD3

    Google Scholar 

  5. K. Blow, B. Nelson, Opt. Lett. 13, 1026 (1988)

    Article  ADS  Google Scholar 

  6. P.N. Kean, X. Zhu, D.W. Crust, R.S. Grant, N. Langford and W. Sibbett, Opt. Lett. 14, 39 (1989)

    Article  ADS  Google Scholar 

  7. J. Mark, L.Y. Liu, K.L. Hall, H.A. Haus and E.P. Ippen, Opt. Lett. 14, 48 (1989)

    Article  ADS  Google Scholar 

  8. E.P. Ippen, H.A. Haus and L.Y. Liu, JOSA B 6, 1736 (1989)

    ADS  Google Scholar 

  9. L.Y. Liu, J.M. Huxley, E.P. Ippen and H.A. Haus, Opt. Lett. 15, 553 (1990)

    Article  ADS  Google Scholar 

  10. D. Burns and W. Sibbett, Electronics Letters 26, 505 (1990)

    Article  Google Scholar 

  11. D. Burns and W. Sibbett, in Technical Digest of Conference on Lasers and ElectroOptics (Optical Society of America, Washington D.C., 1990), paper CFR5

    Google Scholar 

  12. R.S. Grant, P.N. Kean, D. Burns and W. Sibbett, “Passive coupled-cavity mode-locked color-center lasers”, submitted to Optics Letters, Sept. 1990

    Google Scholar 

  13. W. Sibbett, 1990 Topical Meeting on Ultrafast Phenomena, Monterey, (Optical Society of Americal, Washington DC, 1990) paper MA 1.

    Google Scholar 

  14. J. Goodberlet, J. Wang, J.G. Fujimoto and P.A. Schulz, Opt. Lett. 14. 1125 (1989)

    Article  ADS  Google Scholar 

  15. M. Belanger and G.L. Yip, “Novel Ti:LiNbO3 linear mode confinement modulator”, Electron. Lett., vol. 22, n°5, (1986), pp. 252–253

    Article  ADS  Google Scholar 

  16. M. Belanger and G.L. Yip, “A novel Ti:LiNbO3 ridge waveguide linear mode confinement modulator fabricated by reactive ion-beam etching”, Journal of Lightwave Tech., LT-5, 9, (1987), pp. 1252–1257

    Article  ADS  Google Scholar 

  17. A. Neyer, W. Mevenkamp, L. Thylen and B. Lagerstrom, “A BPM analysis of active and passive waveguide crossings”, Journal of Lightwave Tech. LT-3, (1985), pp. 635–642

    Article  ADS  Google Scholar 

  18. L. Thylen and P. Granestrand, “Integrated optic electrooptic device electrode analysis: the influence of buffer layers”, Journal Opt. Comm., Vol. 7, n°1, (1986), pp. 1114

    Google Scholar 

  19. M.A. Sekerka-Bajbus, G.L. Yip and N. Goto, “BPM design optimization and experimental improvement of a Ti:LiNbO3 ridge waveguide linear mode confinement modulator”, To appear in Journal of Lightwave Tech., vol. 8, n°11, (1990)

    Google Scholar 

  20. A. Perales et al, Electronic Letters, vol. 26, n°4, pp. 236–237, Feb. 1990

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marsh, J.H., De La Rue, R.M. (1992). Abstracts from Poster Session. In: Marsh, J.H., De La Rue, R.M. (eds) Waveguide Optoelectronics. NATO ASI Series, vol 226. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1834-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1834-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4810-1

  • Online ISBN: 978-94-011-1834-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics