Femtosecond Techniques for the Characterization of Nonlinear and Linear Properties of Waveguide Devices and Studies of All Optical Switching

Part of the NATO ASI Series book series (NSSE, volume 226)


Short pulse time domain measurements can provide the basis for a comprehensive diagnostic technology to characterize both nonlinear and linear optical properties in waveguide devices. In this chapter we outline methods for characterizing waveguide devices using femtosecond time resolved measurement. These investigations provide fundamental information on linear and nonlinear device behavior. In addition, by developing interferometric measurement techniques we can obtain important insights into the mechanisms of all optical switching in waveguide devices. Based on simple examples, we formulate criteria on material properties which must be satisfied to achieve high speed all optical switching and discuss performance issues for simple all optical switching device designs.


Pump Pulse Signal Pulse Optical Switching Probe Pulse Photon Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.I. Stegeman, E.M. Wright, N. Finlayson, R. Zanoni, and C.T. Seaton, “Third order nonlinear integrated optics,” J.Lightwave Tech. 6, 953 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    S.W. Koch, N. Peyghambarian, and H.M. Gibbs, “Band-edge nonlinearities in direct-gap semiconductors and their application to optical bistability and optical computing,” J. Appl. Phys. 63, R1 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    A. Lattes, H.A. Haus, F.J. Leonberger, and E.P. Ippen, “An ultrafast all-optical gate, IEEE J. Quantum Electron. QE-19, 1718 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    H.A. Haus and N.A. Whitaker Jr., “All-optical logic in optical waveguides, Phil. Trans. R. Soc. Lond. A 313,311 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    H. Haug and S. Schmitt-Rink, “Basic mechanisms of the optical nonlinearities of semiconductors near the band edge,” J. Opt.Soc. Am. B2, 1135 (1985).ADSGoogle Scholar
  6. 6.
    S. Schmitt-Rink, D.S. Chemla, and D.A.B. Miller, “Theory oftransient excitonic optical nonlinearities in semiconductorquantum-well structures,” Phys. Rev. B. 32, 6601 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    D.S. Chemla, D.A.B. Miller, P.W. Smith, A.C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/A1GaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    D.S. Chemla and D.A.B. Miller, “Room-temperature excitonicnonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc, Am. B 2, 1155 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    S. Schmitt-Rink and D.S. Chemla, “Collective excitations and the dynamical Stark effect in a coherently driven exciton system,” Phys. Rev. Lett. 57, 2752 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    S. Schmitt-Rink, D.S. Chemla, and H. Haug, “Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors,” Phys. Rev. B1 37, 941 (1988).CrossRefGoogle Scholar
  11. 11.
    A. V Lehmen, D.S. Chemla, J.E. Zucker, J.P. Heritage, “Optical Stark effect on excitons in GaAs quantum wells,” Opt. Lett. 11, 609 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    W.H. Knox, D.S. Chemla, D.A.B. Miller, J.B. Stark, and S. Schmitt-Rink, “Femtosecond ac Stark Effect in semiconductor quantum wells: extreme low-and high-intensity limits,” Phys. Rev.Lett. 62, 1189 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    S.S. Jha and N. Bloembergen, “Nonlinear optical susceptibilities in Group-IV and III-V semiconductors,” Phys.Rev. 171, 891 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    J.J. Wynne, “Optical third-order mixing in GaAs, Ge, Si, and InAs,” Phys. Rev. 178, 1295 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    W.K. Burns and N. Bloembergen, “Third-harmonic generation in absorbing media of cubic or isotropic symmetry,” Phys. Rev. B 4, 3437 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    P. Li Kam Wa, J.E. Sitch, N.J. Mason, J.S. Roberts, and P.N. Robson, “All optical multiple-quantum-well waveguide switch,” Electron. Lett. 21, 26 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    Y.J. Chen, G.M. Carter, G.J. Sonek, and J.M. Ballantyne,“Nonlinear optical coupling to planar GaAs/AlGaAs waveguides,” App!. Phys. Lett. 48, 272 (1986).CrossRefGoogle Scholar
  18. 18.
    R. Jin, C.L. Chuang, H.M. Gibbs, S.W. Koch, J.N. Polky, and G.A. Pubanz, “Picosecond all-optical switching in single-mode GaAs/A1GaAs strip-loaded nonlinear directional couplers,” Appl.Phys. Lett. 53, 1791 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    R. Jin, J.P. Sokoloff, P.A. Harten, C.L. Chuang, S.G. Lee, M. Warren, H.M. Gibbs, N. Peyghambarian, J.N. Polky, and G.A. Pubanz, “Ultrafast modulation with subpicosecond recovery time in a GaAs/AlGaAs nonlinear directional coupler,” Appl. Phys. Lett. 56, 993 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoc, H.M. Gibbs, and N. Peyghambarian,“Ultrafast all-optical gate with subpicosecond ON and OFF response time,” Appl. Phys. Lett. 49, 749 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57 2446 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    S.H. Park, J.F. Morhange, A.D. Jeffery, R.A. Morgan, A. Chavez-Pirson, H.M. Gibbs, S.W. Koch, N. Peyghambarian, M. Derstine, A.C. Gossard, J.H. English, and W. Weigmann, “Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs,” App!. Phys. Lett. 52, 1201 (1988).CrossRefGoogle Scholar
  23. 23.
    G.R. Olbright and N. Peyghambarian, “Interferometricmeasurement of the nonlinear index of refraction, n2, of CdxSe _x-doped glasses,” Appl. Phys. Lett. 48, 1184 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    D. Cotter, C.N. Ironside, B.J. Ainslie, and H.P. Girdlestone, “Picosecond pump-probe interferometric measurement of optical nonlinearity in semiconductor-doped fibers,” Opt. Lett. 14, 317 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    N. Finlayson, W.C. Banyai, C.T. Seaton, G.I. Stegeman, M. O’Neill, T.J. Cullen, and C.N. Ironside, “Picosecond pump-probe interferometric measurement of optical nonlinearities in channel waveguides,” Opt. Lett. 14, 532 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    M. Sheik-bahae, A.A. Said, and E.W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt.Lett. 14, 955 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).ADSCrossRefGoogle Scholar
  28. 28.
    M.J. LaGasse, K.K. Anderson, H.A. Haus, and J.G. Fujimoto, “Femtosecond all-optical switching in AlGaAs waveguides using a atime division interferometer,” Appl. Phys. Lett. 54, 2068 (1989).ADSCrossRefGoogle Scholar
  29. 29.
    M.J. LaGasse, K.K. Anderson, C.A. Wang, H.A. Haus, and J.G. Fujimoto, “Femtosecond measurements of the nonresonant nonlinear index in AlGaAs,” App!. Phys. Lett. 56, 417 (1990).CrossRefGoogle Scholar
  30. 30.
    K.K. Anderson, M.J. LaGasse, C.A. Wang, J.G. Fujimoto, and H.A. Haus, “Femtosecond dynamics of the nonlinear index near the band edge in AlGaAs waveguides,” App!. Phys. Lett. 56, 1834 (1990).CrossRefGoogle Scholar
  31. 31.
    M.J. LaGasse, “Femtosecond optical nonlinearities in AlGaAs,” Ph.D. Dissertation, M.I.T., 1989.Google Scholar
  32. 32.
    K.K. Anderson, “Disordered quantum well waveguide fabrication and ultrafast optical characterization,” Ph.D. Dissertation, M.I.T.,1989.Google Scholar
  33. 33.
    J.D. Kafka and T. Baer, “A synchronously pumped dye laser using ultrashort pump pulses,” Proc. Soc. Photo-Opt. Instrum.Eng. 533, 38 (1985).Google Scholar
  34. 34.
    T.F. Boggess Jr., A.L. Smirl, S.C. Moss, I.W. Boyd, and E. W. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. QE-21, 488 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    E.W. Van Stryland, Y.Y. Wu, D.J. Hagan, M.J. Soileau, and K. Mansour, “Optical limiting with semiconductors,” J. Opt. Soc. Am. B 5,1980 (1988).ADSCrossRefGoogle Scholar
  36. 36.
    E. Caglioti, S. Trillo, and S. Wabnitz, “Limitations to all-optical switching using nonlinear couplers in the presence of linear and nonlinear absorption and saturation,” J. Opt. Soc.Am. B 5, 472 (1988).ADSCrossRefGoogle Scholar
  37. 37.
    K.W. DeLong, K.B. Rochford, and G.I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys.Lett. 55, 1823 (1989).ADSCrossRefGoogle Scholar
  38. 38.
    J.S. Aitchison, M.K. Oliver, E. Kapon, E. Colas, and P.W.E. Smith, “Role of two-photon absorption in ultrafast semiconductor optical switching devices,” Appl. Phys. Lett. 56, 1305 (1990).ADSCrossRefGoogle Scholar
  39. 39.
    B.S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67, (1984).ADSCrossRefGoogle Scholar
  40. 40.
    E.W. Van Stryland, M.A. Woodall, H. Vanherzeele, and M.J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490, (1985).ADSCrossRefGoogle Scholar
  41. 41.
    M. Sheik-Bahae, D.J. Hagen, and E.W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96, (1990).ADSCrossRefGoogle Scholar
  42. 42.
    W.J. Tomlinson, R.H. Stolen, and C.V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers, J. Opt. Soc. Am. B 1, 139, (1984).ADSCrossRefGoogle Scholar
  43. 43.
    L.F. Mollenauer, R.H. Stolen, and J.P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).ADSCrossRefGoogle Scholar
  44. 44.
    R.R. Alfano, Q.X. Li, T. Jimbo, J.T. Manassah, and P.P. Ho, “Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse,” Opt. Lett. 11, 626 (1986).ADSCrossRefGoogle Scholar
  45. 45.
    M.N. Islam, L.F. Mollenauer, R.H. Stolen, J.R. Simpson, and H.T. Shang, “Cross-phase modulation in optical fibers,” Opt. Lett. 12, 625 (1987).ADSCrossRefGoogle Scholar
  46. 46.
    N.J. Halas, D. Krokel, and D. Grischkowsky, “Ultrafast light-controlled optical-fiber modulator,” Appl. Phys. Lett. 50, 886 (1987).ADSCrossRefGoogle Scholar
  47. 47.
    T. Morioka, M. Saruwatari, A. Takada, “Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode fibres,” Electron. Lett. 23, 453 (1987).CrossRefGoogle Scholar
  48. 48.
    S.R. Friberg, Y. Silberberg, M.K. Oliver, M.J. Andrejco, M.A. Saifi, and P.W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51, 1135 (1987).ADSCrossRefGoogle Scholar
  49. 49.
    S.R. Friberg, A.M. Weiner, Y. Silberberg, B.G. Sfez, and P.S. Smith “Femtosecond switching in a dual-core-fiber nonlinear coupler,” Opt. Lett. 13, 904 (1988).ADSCrossRefGoogle Scholar
  50. 50.
    M.J. LaGasse, D. Liu-Wong, J.G. Fujimoto, and H.A. Haus, “Ultrafast switching with a single-fiber interferometer,” Opt. Lett. 14, 311 (1989).ADSCrossRefGoogle Scholar
  51. 51.
    K.J. Blow, N.J. Doran, and B.K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer,” Opt. Lett. 14, 754 (1989).ADSCrossRefGoogle Scholar
  52. 52.
    M.N. Islam, E.R. Sunderman, R.H. Stolen, W. Pleibel, and J.R. Simpson, “Soliton switching in a fiber nonlinear loop mirror,” Opt. Lett. 14, 811 (1989).ADSCrossRefGoogle Scholar
  53. 53.
    M.N. Islam, “All-optical cascadable NOR gate with gain,” Opt. Lett. 15, 417 (1990).ADSCrossRefGoogle Scholar
  54. 54.
    J.D. Moores, K. Bergman, H.A. Haus, and E.P. Ippen, “Demonstration of optical switching via solitary wave collisions in a fiber ring reflector,” Opt. Lett., in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations