Skip to main content

Influence of Surfaces on Microbial Activity

  • Chapter
Biofilms — Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 223))

Abstract

Three zones can be roughly distinguished in biofilms: (i) the primary layer of cells which are in contact with the solid substratum; (ii) the bulk of the biofilm; (iii) the surface layer of cells which are in direct contact with the liquid phase. The activity of the cells in each one of these zones will be affected to different degrees by mass transfer limitations, by physico-chemical interactions with the support, or by shear forces exerted by the liquid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asther, M., Bellon-Fontaine, M.N., Capdeville, C. and Corrieu, G. (1990), ‘A themiodynamic model to predict Phanerochaete chrysosporium INA-12 adhesion to various solid carriers in relation to lignin peroxidase production’, Biotechnol. Bioeng., 35, 477–482.

    Article  CAS  Google Scholar 

  • Barbotin, J.N., Nava Saucedo, J.E. and Thomasset, B. (1990), ‘Morphological observations on immobilized cells’, in Physiology of Immobilized Cells (J.A.M. de Bont, J. Visser, B. Mattiasson and J. Trampers, eds.), Proc. Int. Symp. Wageningen, The Netherlands, 10–13 December 1989, Elsevier Science Publishers, Amsterdam, pp. 487–493.

    Google Scholar 

  • Burchard, R.P. (1981), ‘Gliding motility of prokaryotes: Ultrastructure, physiology, and genetics’, Ann. Rev. Microbiol., 35, 497–529.

    Article  CAS  Google Scholar 

  • Champluvier, B., Kamp, B. and Rouxhet, P.G. (1988), ‘Immobilization of ß-galactosidase retained in yeast: adhesion of the cells on a support’, Appl. Microbiol. Biotechnol., 27, 464–469.

    CAS  Google Scholar 

  • Dagostino, L., Goodman, A.E. and Marshall, K.C. (1991), ‘Physiological responses induced in bacteria adhering to surfaces’, Biofouling, 4, 113–119.

    Article  Google Scholar 

  • Dazzo, F.B. (1984), ‘Bacterial adhesion to plant root surfaces’, in Microbial Adhesion and Aggregation (K.C. Marshall, ed.), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 85–93.

    Chapter  Google Scholar 

  • Doran, P.M. and Bailey, J.E. (1986), ‘Effects of immobilization on growth, fermentation properties, and macromolecular composition of Saccharomyces cerevisiae attached to gelatin’, Biotechnol. Bioeng., 38, 73–87.

    Article  Google Scholar 

  • Durand, G. and Navarro, J.M. (1978), ‘Immobilized microbial cells’, Process Biochemistry, September 1978, 14–23.

    Google Scholar 

  • Ellwood, D.C., Keevil, C.W., Marsh, P.D., Brown, C.M. and Wardell, J.N. (1982), ‘Surfaceassociated growth’ Phil. Trans. Roy. Soc. Lond., B 297, 517–532.

    Article  CAS  Google Scholar 

  • Fletcher, M. (1986), ‘Measurement of glucose utilization by Pseudomonas fluorescens that are free-living and that are attached to surfaces’, App. Environ. Microbiol., 52, 672–676.

    CAS  Google Scholar 

  • Fletcher, M. (1992), ‘Bacterial metabolism in biofilms’, in Biofilms: Science and Technology, Melo et al. (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, this volume.

    Google Scholar 

  • Hall, P.G. and Krieg, N.R. (1983), ‘Swarming of Azospirillum brasilense on solid media’, Can. J. Microbiol., 29, 1592–1594.

    Article  Google Scholar 

  • Hattori, R. and Hattori, T. (1985), ‘Adsorptive phenomena involving bacterial cells and an anion exchange resin’, J. Gen. Appl. Microbiol., 31, 147–163.

    Article  CAS  Google Scholar 

  • Hattori, R. and Hattori, T. (1987), ‘Interaction of microorganisms with a charged surface A model experiment’, Reports of the Inst. for Agricultural Res., Tohoku Univ., 36, 21–67.

    Google Scholar 

  • Hattori, T. and Furusaka, C. (1960), ‘Chemical activities of E. coli adsorbed on a resin’, J. Biochem., 48, 831–837.

    CAS  Google Scholar 

  • Humphrey, B.A. and Marshall, K.C. (1984), ‘The triggering effect of surfaces and surfactants on heat output, oxygen consumption and size reduction of a starving marine Vibrio’, Arch. Microbiol., 140, 166–170.

    Article  CAS  Google Scholar 

  • Humphrey, B.A., Dickson, M.R. and Marshall, K.C. (1979), ‘Physicochemical and in situ observations on the adhesion of gliding bacteria to surfaces’, Arch. Microbiol., 120, 231–238.

    Article  CAS  Google Scholar 

  • Karel, S.F., Salmon, P.M., Stewart, P.S. and Robertson, C.R. (1990), ‘Reaction and diffusion in immobilized cells: Fact and fantasy’, in Physiology of Immobilized Cells (J.A.M. de Bont, J. Visser, B. Mattiasson and J. Trampers, eds.), Proc. Int. Symp. Wageningen, The Netherlands, 10–13 December 1989, Elsevier Science Publishers, Amsterdam, pp. 115–126.

    Google Scholar 

  • Kayem G.J. and Rouxhet, P.G. (1983), ‘Adsorption of colloidal hydrous alumina on yeast cells’, J. Chem. Soc., Faraday Trans., 79, 561–569.

    Article  CAS  Google Scholar 

  • Kefford, B., Humphrey, B.A. and Marshall, K.C. (1986), ‘Adhesion: a possible survival strategy for Leptospires under starvation conditions’, Current Microbiol., 13, 247–250.

    Article  CAS  Google Scholar 

  • Kjelleberg, S., Humphrey, B.A. and Marshall, K.C. (1982), ‘Effect of interfaces on small, starved marine bacteria’, App. Environ. Microbiol., 43, 1166–1172.

    CAS  Google Scholar 

  • Kjelleberg, S., Humphrey, B.A. and Marshall, K.C. (1983), ‘Initial phases of starvation and activity of bacteria at surfaces’, App. Environ. Microbiol., 46., 978–984.

    CAS  Google Scholar 

  • Klein, J. and Ziehr, H. (1990), ‘Immobilization of microbial cells by adsorption’, J. Biotechnol., 16, 1–16.

    Article  Google Scholar 

  • Lindsey, K. and Yeoman, M.M. (1984), ‘The synthetic potential of immobilized cells of Capsicum frutescens Mill cv. annuum’, Planta, 162, 495–501.

    Article  CAS  Google Scholar 

  • Mattiasson, B. and Hahn-Hägerdal, B. (1982), ‘Microenvironmental effects on metabolic behaviour of immobilized cells. A hypothesis.’, Eur. J. Appl. Microbiol. Biotechnol., 16, 52–55.

    Article  CAS  Google Scholar 

  • Morikawa, Y., Ochiai, K., Karube, I. and Suzuki, S. (1979), ‘Bacitracin production by whole cells immobilized in polyacrylamide gel’, Antimicrobial Agents and Chemotherapy, 15, 126–130.

    Article  CAS  Google Scholar 

  • Morisaki, H. (1983), ‘Effect of solid liquid interface on metabolic activity of Escherichia coli’, J. Gen. Appl. Microbiol., 29, 195–204 (1983).

    Article  CAS  Google Scholar 

  • Mozes, N. and Rouxhet, P.G. (1984), ‘Dehydrogenation of cortisol by Arthrobacter simplex immobilized as supported monolayer’, Enzyme Microb. Technol., 6, 497–502.

    Article  CAS  Google Scholar 

  • Mozes, N. and Rouxhet, P.G. (1985), ‘Metabolic activity of yeast immobilized as supported monolayer’, Appl. Microbial Biotechnol., 22, 92–97.

    Article  CAS  Google Scholar 

  • Mozes, N. and Rouxhet, P.G. (1991), ‘Effects of the micro-environment on metabolic activity of immobilized yeast cells’, Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversity Gent , 56, 1761–1768.

    CAS  Google Scholar 

  • Mozes, N. and Rouxhet, P.G. (1992), ‘Modification of surfaces for promoting cell immobilization’ in Biofilms: Science and Technology, Melo et al. (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, this volume.

    Google Scholar 

  • Mozes, N., Marchal, F., Hermesse, M.P., Van Haecht, J.L., Reuliaux, L., Léonard, A.J. and Rouxhet, P.G. (1987), ‘Immobilization of microorganisms by adhesion: Interplay of electrostatic and nonelectrostatic interactions’, Biotechnol. Bioeng., 30, 439–450.

    Article  CAS  Google Scholar 

  • Navarro, J.M. and Durand, G. (1977), ‘Modification of yeast metabolism by immobilization onto porous glass’, European J. Appl. Microbiol., 4, 243–254.

    Article  CAS  Google Scholar 

  • Rouxhet, P.G. (1991), ‘Interfacial interactions with microorganisms: Application in fermentation technology’, Biofouling, 4, 151–161.

    Article  CAS  Google Scholar 

  • Rouxhet, P.G. and Mozes, N. (1990), ‘The micro-environment of immobilized cells: critical assessment of the influence of surfaces and local concentrations’, in Physiology of Immobilized Cells (J.A.M. de Bont, J. Visser, B. Mattiasson and J. Trampers, eds.), Proc. Int. Symp. Wageningen, The Netherlands, 10–13 December 1989, Elsevier Science Publishers, Amsterdam, pp. 343–354.

    Google Scholar 

  • Rouxhet, P.G., Mozes, N., Hermesse, M.P. and Matta-Ammouri, G. (1987), ‘Immobilization of microorganisms by adhesion to a support: influence of physico-chemical factors’, in Proc. 4th European Congress on Biotechnol. (O.M. Neijssel, R.R. van der Meer and K.Ch.A.M. Luyben, eds.), Elsevier Science Publishers, Amsterdam, pp. 193–196.

    Google Scholar 

  • Rouxhet, P.G., Van Haecht, J.L., Didelez, J., Gerard, P. and Briquet, M. (1981), ‘Immobilization of yeast cells by entrapment and adhesion using siliceous materials’, Enzyme Microb. Technol., 3, 49–54.

    Article  CAS  Google Scholar 

  • Silverman, M., Belas, R. and Simon, M. (1984), ‘Genetic control of bacterial adhesion’, in Microbial Adhesion and Aggregation (K.C. Marshall, ed.), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 95–107.

    Chapter  Google Scholar 

  • Sorongon, M.L., Bloodgood, R.A. and Burchard, R.P. (1991), ‘Hydrophobicity, adhesion and surface-exposed proteins of gliding bacteria’, Appl. Environm. Microbiol., 57, 3193–3199.

    CAS  Google Scholar 

  • Van Loosdrecht, M.C.M., Lyklema, J., Norde, W. and Zehnder, A.J.B. (1990), ‘Influence of interfaces on microbial activity’, Microbiol. Rev., 54, 75–87.

    Google Scholar 

  • Wheatley, M.A., Phillips, C.R. (1983), ‘The influence of internal and external diffusional limitations on the observed kinetics of immobilized whole bacterial cells with cell-associated ß -glucosidase activity’, Biotechnol. Letters, 5, 79–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mozes, N., Rouxhet, P.G. (1992). Influence of Surfaces on Microbial Activity. In: Melo, L.F., Bott, T.R., Fletcher, M., Capdeville, B. (eds) Biofilms — Science and Technology. NATO ASI Series, vol 223. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1824-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1824-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4805-7

  • Online ISBN: 978-94-011-1824-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics