Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 82))

  • 275 Accesses

Abstract

Our purpose is to provide, in this chapter, the introductory framework to the topics to be dealt with through the rest of this textbook. We will thus present some mathematical methods suitable for the analysis of nonlinear stochastic systems which are modelled by stochastic and random nonlinear partial differential equations. These methods will be developed with particular attention to their applications to the physics of continuum and to mechanics. In this respect, a partial differential equation can, in many cases, be regarded as a mathematical model of a real physical system, which governs the time and/or space evolution of its dependent variables. As such, the model equation describes the physical state of the system. When the state of the system is defined by more than one variable, the mathematical model is given in terms of a set of equations, the number of which is equal to the number of components of the state variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 1

  1. Bellomo N. and Riganti R., Nonlinear Stochastic Systems in Physics and Mechanics, World Scientific, Singapore, (1987).

    MATH  Google Scholar 

  2. Adomian G., Stochastic Systems, Academic Press, New York, (1983).

    MATH  Google Scholar 

  3. Arnold L., Stochastic Differential Equations: Theory and Applications, Wiley, London, (1974). Princeton, (1985).

    MATH  Google Scholar 

  4. Kantorovic L. and Akilov G., Funkzionalnij Analiz, MIR, Moscow, (1977).

    Google Scholar 

  5. Mikhailov V., Partial Differential Equations, MIR, Moscow, (1978).

    Google Scholar 

  6. Courant R. and Hilbert D., Methods of Mathematical Physics, Inter-science, New York, (1953).

    Google Scholar 

  7. Lions J.L., Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Paris, (1969).

    Google Scholar 

  8. Adomian G. and Bellomo N., On the Tricomi problem, Comp. Math. with Appl., 12A, (1986), 557–563.

    Article  MathSciNet  Google Scholar 

  9. Bellomo N. and de Socio L., Initial-boundary value problems for the semidiscrete Boltzmann equation: Analysis by Adomian’s decomposition method, J. Math. Analysis Appl., 128, (1987), 112–124.

    Article  MATH  Google Scholar 

  10. Smart D.R., Fixed Point Theorems, Cambridge University Press, Cambridge, (1974).

    MATH  Google Scholar 

  11. Papoulis A., Random Variables and Stochastic Processes, McGraw-Hill, New York, (1985).

    Google Scholar 

  12. Bellomo N. and Riganti R., Time-evolution and fluctuations of the probability density and entropy functions for a class of nonlinear stochastic systems in mathematical physics, in Bellmann Memorial Issue, Adomian G. and Lee S. Eds., Pergamon,. New York, (1986), 663–675.

    Google Scholar 

  13. Gatignol R., Théorie Cinétique des Gaz a Répartition Discréte de Vitésses, Lect. Notes in Phys., vol. 36, Springer, Berlin, (1976).

    Google Scholar 

  14. Cabannes H., Global solution of the discrete Boltzmann equation, in Mathematical Problems in the Kinetic Theory of Gases, Neunzert H. and Pack D. Eds., Lang, Frankfürt, (1980), 25–44.

    Google Scholar 

  15. Temam R., Behaviour at time t=0 of the solutions of semilinear evolution equations, J. Differential Equations, 43, (1982), 73–92.

    Article  MathSciNet  MATH  Google Scholar 

  16. Smale S., Smooth solutions of the heat and wave equations, Comment. Math. Helv. 55 (1980), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sobczyk K., Stochastic Differential Equations, Kluwer, Amsterdam, 1991.

    Book  MATH  Google Scholar 

  18. Soong T., Random Differential Equations in Sciences and Engineering, Academic Press, New York, (1973).

    Google Scholar 

  19. McShane E.J., Stochastic Calculus and Models, Academic Press, New York, (1974).

    MATH  Google Scholar 

  20. Friedman A., Random Differential Equations and Applications, Academic Press, New York, (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bellomo, N., Brzezniak, Z., de Socio, L.M. (1992). Stochastic Models and Random Evolution Equations. In: Nonlinear Stochastic Evolution Problems in Applied Sciences. Mathematics and Its Applications, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1820-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1820-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4803-3

  • Online ISBN: 978-94-011-1820-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics