Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 384))

Abstract

We show that the solutions of the Ginzburg-Landau equation on a periodic interval are of Gevrey-class regularity. Specifically, we prove that the modes of the Fourier decomposition of a solution u decay exponentially. Using this preliminary result, we establish that the N-dimensional linear Galerkin approximation of u converges exponentially fast to uas N goes to infinity. We discuss the influence of the parameters in the Ginzburg-Landau equation on the decay rate of the Fourier modes and on the rate of convergence of the Galerkin approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartuccelli, M., Constantin, P., Doering, C. R., Gibbon, J. D. and Gisselfält, M. (1990) ‘On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation’, Phys. 44D, 421–444.

    Google Scholar 

  2. Bernoff, A. J. (1988) ‘Slowly varying fully nonlinear wavetrains in the Ginzburg-Landau equation’, Phys., 30D, 363–381.

    MathSciNet  Google Scholar 

  3. Constantin, P., and Foias, C. (1988) Navier-Stokes Equations, University of Chicago Press, Chicago.

    MATH  Google Scholar 

  4. Devulder, C., Marion, M., and Titi, E.S. (1992) ‘On the rate of convergence of the nonlinear Galerkin methods’, Math. of Comp., to appear.

    Google Scholar 

  5. DiPrima, R. C., Eckhaus, W., and Segel, L. A. (1971) ‘Non-linear wave-number interaction in near-critical two-dimensional flows’, J. Fluid Mech., 49, 705–744.

    Article  MATH  Google Scholar 

  6. Doelman, A. (1989) ‘Slow time-periodic solutions of the Ginzburg-Landau equation’, Phys., 40D, 156–172.

    MathSciNet  Google Scholar 

  7. Doelman, A. (1991) ‘Finite dimensional models of the Ginzburg-Landau equation’, Nonlin., 4, 231–250.

    Article  MathSciNet  MATH  Google Scholar 

  8. Doelman, A., and Titi, E. S. (1992) ‘Regularity of solutions and the convergence of the linear Galerkin method in the Ginzburg-Landau equation’, in preparation.

    Google Scholar 

  9. Doering, C. R., Gibbon, J. D., Holm, D. D., and Nicolaenko, B. (1988) ‘Low dimensional behaviour in the complex Ginzburg-Landau equation’, Nonlin., 1, 279–310.

    Article  MathSciNet  MATH  Google Scholar 

  10. Foias, C., and Temam, R. (1989) ‘Gevrey class regularity for the solutions of the Navier-Stokes equations’, J. Funct. An., 87, 359–369.

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman, A. (1976) Partial Differential Equations, R. Krieger Pub. Co., New York.

    Google Scholar 

  12. Ghidaglia, J. M., and Héron, B. (1987) ‘Dimension of the attractors associated to the Ginzburg-Landau equation’, Phys., 28D, 282–304.

    Google Scholar 

  13. van Harten, A. (1991) ‘On the validity of the Ginzburg-Landau equation’, J. Nonl. Sc., 1, 397–422.

    Article  MATH  Google Scholar 

  14. Hocking, L. M., Stewartson, K., and Stuart, J. T. (1972) ‘A nonlinear stability burst in plane parallel flow’, J. Fluid Mech., 51, 705–735.

    Article  MATH  Google Scholar 

  15. Holmes, P. (1986) ‘Spatial structure of time-periodic of the Ginzburg-Landau equation’, Phys., 23D, 84–90.

    Google Scholar 

  16. Iooss, G., Mielke, A., and Demay, Y. (1989) ‘Theory of steady Ginzburg-Landau equation, in hydrodynamic stability problems’, Eur. J. Mech. B/Fluids, 8, 229–268.

    MathSciNet  MATH  Google Scholar 

  17. Keefe, L. R. (1985) ‘Dynamics of perturbed wave train solutions to the Ginzburg-Landau equation’, Stud. in Appl. Math., 73, 91–153.

    MathSciNet  MATH  Google Scholar 

  18. Moon, H. T., Huerre, P., and Redekopp, L. G. (1983) ‘Transitions to chaos in the Ginzburg-Landau equation’, Phys., 7D, 135–150.

    MathSciNet  Google Scholar 

  19. Newell, A. C. (1974) ‘Envelope equations’ Lect. Appl. Math., Vol. 15, 157–163.

    MathSciNet  Google Scholar 

  20. Promislow, K. (1991) ‘The development and numerical implementation of approximate inertial manifolds for the Ginzburg-Landau equation’, Ph.D. thesis, Indiana University.

    Google Scholar 

  21. Rodriguez, J. D., and Sirovich, L. (1990) ‘Low-dimensional dynamics for the complex Ginzburg-Landau equation’, Phys., 43D, 77–86.

    MathSciNet  Google Scholar 

  22. Stewartson, K., and Stuart, J. T. (1971) ‘A non-linear instability theory for a wave system in plane Poiseuille flow’, J. Fluid Mech., 48, 529–545.

    Article  MathSciNet  MATH  Google Scholar 

  23. Temam, R. (1977) Navier-Stokes Equations: Theory and Numerical Solution, Stud. Math. Appl. Vol. 2, North-Holland, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doelman, A., Titi, E.S. (1993). Exponential Convergence of the Galerkin Approximation for the Ginzburg-Landau Equation. In: Kaper, H.G., Garbey, M., Pieper, G.W. (eds) Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters. NATO ASI Series, vol 384. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1810-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1810-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4798-2

  • Online ISBN: 978-94-011-1810-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics