Skip to main content

Effective Properties for Non-linear Composite Materials: Computational Aspects

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 227))

Abstract

This paper considers some aspects of the computational evaluation of effective properties of composite materials. The computational models used assume that the composite materials can be represented by the periodic repetition of a microstructure. Based on this assumption and using asymptotic expansions (homogenization theory) the effective properties for linear composite materials can be derived, as is well known [1–6]. The characterization of effective properties for nonlinear composite materials is a more involved issue and had been studied by researchers in different fields [6–16]. The computational models for the nonlinear case consider the same kind of approach, asymptotic expansions, and are restricted to the quasi static loading conditions, i.e., neglecting inertia effects. Two different kind of models are introduced. One based on incremental formulation, and another based on Newton’s general iterative scheme for nonlinear equations. The incremental model is particularized for large deformation of elasto-plasticity of composites. Assumptions with respect to the components constitutive relations are: rate independent plasticity, additive decomposition of velocity gradient, isotropic and kinematic hardening, and normal flow rule. The Newton’s model is introduced for both the general case or the hyperelastic case. Any of the presented models is able to characterize the effective tangent modulli of the composite, however, since these depend on the microstructure stress distribution, overall global properties are, in general, difficult to characterize. The numerical examples presented for the nonlinear case consider only the incremental model. For these examples, the components of the composite microstructure are assumed to have constitutive relations based on J2 flow plasticity theory with isotropic hardening. Determination of “equivalent” plasticity properties for the composite and convergence issues are addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. - LIONS, J. L.(1981) ‘Some Methods in the Mathematical Analysis of Systems and their Control ’, Science Press, Beijing, China , Gordon and Breach, New York

    MATH  Google Scholar 

  2. - BENSSOUSAN, A., LIONS, J. L., and PAPANICOULAU, G., (1978) ‘Asymptotic Analysis for Periodic Structures ’, North Holland, Amsterdam

    Google Scholar 

  3. - SANCHEZ-PALENCIA, E., (1980) ‘Non Homogeneous Media and Vibration Theory ’, Lecture Notes in Physics, Nb. 127, Springer-Verlag, Berlin

    MATH  Google Scholar 

  4. - DUVAUT, G., (1976) ‘Analyse Functionelle et Mécanique des Milieux Continues. Applications à l ’Etude de Matérieux Composites Elastiques à Structure Périodiques. Homogénéisation ’, in KOITER, W.T. (ed). ’Theoretical and Applied Mechanics ’, North Holland, pp 119–132

    Google Scholar 

  5. - MURAT, F., and L. TARTAR, L. (1985) ‘Calculs des Variations et Homogénéization ’, in ’Les Methodes de l ’Homogenéization.Theory et Applications en Physique ’, Coll. de la Dir. de Etudes et Recherches d ’Electricité de France, Eyrolles, p.319.

    Google Scholar 

  6. - KOHN, R, (1988) ‘Recent Progresses in the Mathematical Modeling of Composite Materials ’, in Sih, G. et al. (eds.), ’Composite Materials Response, Constitutive Relations and Damage Mechanisms ’, Elsevier, pp 155–177.

    Google Scholar 

  7. - HILL, R., (1964) ‘Theory of Mechanical Properties of Fiber-Strengthened Materials: II. Inelastic Behavior ’, J. Mech. Phys. Solids, Vol. 12, pp 213–218.

    Article  MathSciNet  Google Scholar 

  8. - DVORAK, G. and BAHEI-EL-DIN, Y., (1979) ‘Elastic-Plastic behavior of Fibrous Composites ’, J. Mech. Phys. Solids Vol. 27, pp 51–72.

    Article  MATH  Google Scholar 

  9. - TEPLY, J. and DVORAK, G., (1988) ‘Bounds on Overall instantaneous Properties of Elastic-Plastic Composites ’, J. Mech. Phys. Solids Vol. 36, pp 29–58.

    Article  MATH  Google Scholar 

  10. - ABOUDI, J., (1982) ‘A Continuum Theory for Fiber-Reinforced Elastic- Viscoplastic Composites ’, Int. J. Engng. Sci. Vol. 20, No. 5, pp 605–621.

    Article  MATH  Google Scholar 

  11. - ABOUDI, J. (1991) ‘Mechanics of Composite Materials - A unified Micromechanical Approach ’, Elsevier, Amsterdam.

    MATH  Google Scholar 

  12. - SUQUET, P., (1985) ‘Local and Global Aspects in the Mathematical Theory of Plasticity ’, in ed A. SAWCZUK, G. BIANCHI ’Plasticity Today - Modelling Methods and Applications ’, Elsevier, London, pp 279–310

    Google Scholar 

  13. - BOUCHITTE, G., and SUQUET, P. (1991), ’Homogenization, Plasticity and Yield Design ’, in Dal MASO and Dell ’ ANTONIO (eds.) ‘Composite Media and Homogenizations Theory ’, Birkhauser, pp 107–133

    Chapter  Google Scholar 

  14. - DEMENGEL, F. and QI, T., (1986) ‘Homogénéisation en Plasticité ’, C. R. Acad. Sc. Paris, T. 303, Série I, n° 8, pp 339–341.

    Google Scholar 

  15. - FRANCFORT, G. and SUQUET, P., (1986) ‘Homogenization and Mechanical Dissipation in Thermoviscoelasticity ’, Archives of Rational Mechanics, 96, n° 3, pp 265–293.

    MathSciNet  MATH  Google Scholar 

  16. - RIZZI, S., LEEWOOD, A. , DOYLE, J., and SUN C., (1987) ‘Elastic Plastic Analysis of Boron/Aluminum Composite Under Constrained Plasticity Conditions ’, Journal of Composite Materials, Vol. 21, pp 734–749.

    Article  Google Scholar 

  17. - CRISTMAN, T., NEEDLEMAN, A., and SURESH, S. (1989) ‘An Experimental and Numerical Study of Deformation in Metal-Ceramic Composites ’, Preprint, Brown University Report No. NFS-ENG-8451092-1-89,

    Google Scholar 

  18. - WUNG, C. and DVORAK, G., (1985) ‘Strain-Space Plasticity analysis of Fibrous Composites ’, International Journal of Plasticity, Vol. 1, pp 125–139.

    Article  MATH  Google Scholar 

  19. - PEDERSEN, O., (l983) ’Thermoelasticity and Plasticity of Composites -I. Mean Field Theory ’, Acta Metall. Vol. 31, No. 11, pp 1795–1808.

    Article  Google Scholar 

  20. - LICHT, C., (1986) ‘Homogénéisation d ’un Milieu incompressible Viscoplastique de Type Norton-Hoff Périodiquement Perforé ’, C. R. Acad. Sc. Paris, T. 302, Série I,n° l, pp 51–53.

    Google Scholar 

  21. - WAGROWSKA, M. , (1988) ‘On the Homogenization of Elastic-Plastic Periodic Composites by the Microlocal Parameter Approach ’, Acta Mechanica 73, pp 45– 65.

    Article  MATH  Google Scholar 

  22. - LICHT, C. and SUQUET, P., (1986) ‘Augmented Lagrangian Method Applied to a Problem of Incompressible Viscoplasticity Arising in Homogenization ’, in TAYLOR, C., OWEN, D., HINTON,E.and DAMJANIC, F. (eds.) ‘Numerical Methods for Nonlinear Problems - Vol 3 ’, “Proceedings of the International Conference Held at Dubrovnik, Yugoslavia, 15th–18th September, 1986”, Pineridge Press, Swansea, pp 106–114.

    Google Scholar 

  23. - GUEDES,J. and KIKUCHI, N., ’A Computational Model for Nonlinear Composite Materials using Homogenization\, in preparation

    Google Scholar 

  24. - GUEDES, J. , (1990) ‘Nonlinear Computational Models for Composite Materials using Homogenization ’, Phd Thesis, University of Michigan.

    Google Scholar 

  25. - GREEN, A. and NAGHDI, P., (1965) ‘A General Theory of an Elastic-Plastic Continuum ’, Archives for Rational Mechanics and Analysis, Vol. 18, pp 251–281.

    Article  MathSciNet  MATH  Google Scholar 

  26. - GREEN, A. and NAGHDI, P., (1971) ‘Some Remarks on Elastic-Plastic Deformation at Finite Strain ’, Int. J. Engng. Sci., Vol. 9, pp 1219–1229.

    Article  MATH  Google Scholar 

  27. - MULLER, S. (1987) ‘Homogenization of Nonconvex Integral Functionals and Cellular Elastic Materials ’, Archive for Rational Mechanics and Analysis, Vol 99, Nb3, pp 189–212.

    Article  MathSciNet  Google Scholar 

  28. - TRIANTAFYLLIDIS, N. and MAKER, B. (1985) ‘On the Comparison Between Microscopic and Macroscopic Instability Mechanisms in a Class of Fiber Reinforced Composites ’, J. Appl. Mech., 52, pp 794–800.

    Article  MATH  Google Scholar 

  29. - BENDSOE, M.P. and TRIANTAFYLLIDIS, N. (1990), ’Scale effects in the Optimal Design of a Microstructured Medium against Buckling ’, Int. J. Solids Struct., 26, pp 725–741.

    Article  Google Scholar 

  30. - SIMO, J. and TAYLOR, R., (1985) ‘Consistent Tangent Operators for Rate-Independent Elasitopelasticity ’, Computer Methods in Applied Mechanics and Engineering 48, pp 101–118.

    Article  MATH  Google Scholar 

  31. - HASHIN, Z., (1970) ‘Theory of Composite Materials ’, in Wend, F.W., Leibowitz, H., Perrone, N. (eds.) ‘Mechanics of Composite Materials ’, Pergamon Press, Oxford

    Google Scholar 

  32. - LEMAITRE, J., CHABOCHE, J.L., (1988) ‘Mécanique des Materiaux Solides ’, Dunod, Paris

    Google Scholar 

  33. - TVERGAARD, V. (1991) ‘On the Numerical Modelling of Metal Matrix Composites ’ in Hansen, N. et all (eds.) ;Metal Matrix Composites - Processing, Micro structure and Porperties ’, Riso Nat. Lab., Denmark

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guedes, J.M. (1993). Effective Properties for Non-linear Composite Materials: Computational Aspects. In: Bendsøe, M.P., Soares, C.A.M. (eds) Topology Design of Structures. NATO ASI Series, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1804-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1804-0_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4795-1

  • Online ISBN: 978-94-011-1804-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics