Skip to main content

Analysing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration

  • Chapter
CO2 and biosphere

Part of the book series: Advances in vegetation science ((AIVS,volume 14))

  • 283 Accesses

Abstract

Understanding how photosynthetic capacity acclimatises when plants are grown in an atmosphere of rising CO2 concentrations will be vital to the development of mechanistic models of the response of plant productivity to global environmental change. A limitation to the study of acclimatisation is the small amount of material that may be destructively harvested from long-term studies of the effects of eleva tion of CO2 concentration. Technological developments in the measurement of gas exchange, fluorescence and absorption spectroscopy, coupled with theoretical developments in the interpretation of measured values now allow detailed analyses of limitations to photosynthesis in vivo. The use of leaf chambers with Ulbricht integrating spheres allows separation of change in the maximum efficiency of energy transduction in the assimilation of CO2 from changes in tissue absorptance. Analysis of the response of CO2 assimilation to intercellular CO2 concentration allows quantitative determination of the limitation imposed by stomata, carboxylation efficiency, and the rate of regeneration of ribulose 1:5 bisphosphate. Chlorophyll fluorescence provides a rapid method for detecting photoinhibition in heterogeneously illuminated leaves within canopies in the field. Modulated fluorescence and absorption spectroscopy allow parallel measurements of the efficiency of light utilisation in electron transport through photo systems I and II in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A,:

net rate of CO2 uptake per unit leaf area (μmol m−2 S−1)

Asat :

light-saturated A

ΔA,:

change in absorptance of PSI on removal of illumination (OD)820

c,:

CO2 concentration in air (μmol m−2 S−1)

ca,:

c in the bulk air

ci,:

c in the intercellular spaces

ce,:

carboxylation efficiency (mol m−2 S−1)

E,:

transpiration per unit leaf area (mol m−2 S−1)

F,:

fluorescence emission of PSII (relative units)

Fm,:

maximal level of F

Fo,:

minimal level of F upon illumination when PSII is maximally oxidised

Fs :

the steady-state F following the m peak

Fv,:

the difference between Fm and Fo

F′m,:

maximal F′ generated after the m peak by addition of a saturating light pulse

F′o :

the minimal level of F after the m peak determined by re-oxidising PSII by far-red light

g1 leaf conductance to CO2,:

diffusion in the gas phase (mol m−2 S−1)

kc and ko,:

the Michaelis constants for CO2 and O2, respectively, (μmol m−1)

Jmax,:

the maximum rate of regeneration of rubP (μmol m−2 S−1)

1,:

stomatal limitation to CO2, uptake (dimensionless, 0−1)

LCP,:

light compensation point of photosynthesis (μmol m−2 S−1)

oi,:

the intercellular O2, concentration(mol−1)

Pi,:

cytosol inorganic phosphate concentration

PSI,:

photosystem I

PS11,:

photosystem II

Q,:

photon flux (μmol m−2 S−1)

Qabs,:

Q absorbed by the leaf

rubisCO,:

ribulose 1:5 bisphosphate carboxylase/oxygenase

rubP,:

ribulose 1:5 bisphosphate

s,:

projected surface area of a leaf (m2)

V:

V,max is the maximum rate of carboxylation (μmol m−2 S−1)

Wc,:

the rubisCO limited rate of carboxylation (μmol m−2 S−1)

Wj,:

the electron transport limited rate of regeneration of rubP (μmol m−2 S−1)

Wp :

the inorganic phosphate limited rate of regeneration of rube (μmol m−2 S−1)

α,:

absorptance of light (dimensionless, 0−1)

αa,:

α of standard black absorber α1 α of leaf

αs,:

α of integrating sphere walls

г,:

CO2, compensation point of photosynthesis (μmol m−1)

Ï„:

the specificity factor for rubisC0 carboxylation (dimensionless)

0,:

convexity of the response of A to Q (dimensionless, 0−1)

φ,:

the quantum yield of photosynthesis on an absorbed light basis(δA/δQabs; dimensionless)

φapp,:

the quantum yield of photosynthesis on an incident light basis (δA/δQabs; dimensionless)

φm,:

the maximum φ; φm,app, the maximum φapp

φPSII,:

the photochemical efficiency of PSII (dimensionless, 0−1)

φPSII,m,:

the maximum φPSII

References

  • Arp W.J. & Drake B.G. 1991. Increased photo synthetic ca pacity of Scirpus olneyi after 4 years of exposure to elevated CO2. Plant Cell Environ. 14: 869–875.

    Article  CAS  Google Scholar 

  • Baker N.R. 1991. A possible role for photosystem II in environmental perturbation of photosynthesis. Physiol. Plant. 81: 563–570.

    Article  CAS  Google Scholar 

  • Baker N.R. & Ort D.R. 1992. Light and crop photo synthetic performance. In: N.R. Baker & H. Thomas (eds.), Crop Photosynthesis, Elsevier, Amsterdam (in press).

    Google Scholar 

  • Bingham M.J. & Long S.P. 1992. Equipment for crop and environmental plant physiology research. In: Hall D.O., Scurlock J.M.O., Bolhár-Nordenkampf H.R., Leegood R.C. & Long S.P. (eds.), Techniques in Photosynthesis and Bioproductivity, Chapman & Hall, London (in press).

    Google Scholar 

  • Björkman O. & Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170: 489–504.

    Article  Google Scholar 

  • Bowes G. 1991. Growth at elevated CO2: photo synthetic responses mediated through rubisCO. Plant Cell Environ. 14: 795–806.

    Article  CAS  Google Scholar 

  • Butler W.L. & Kitijima M. 1975. A tripartite model for chloroplast fluorescence, in Avron, M. (ed.) Proceedings of the 3rd International Congress on Photosynthesis, pp. 13–24, Elsevier, Amsterdam.

    Google Scholar 

  • Coleman J.R. 1991. The molecular and biochemical analyses of CO2 concentrating mechanisms in cyanobacteria and microalgae. Plant Cell Environ. 14: 861–867.

    Article  CAS  Google Scholar 

  • Eamus D. 1991. The interaction of rising CO2 and temperature with water use efficiency. Plant Cell Environ. 14: 843– 852.

    Article  Google Scholar 

  • Farage P.K. & Long S.P. 1991. The occurrence of photoinhibition in an over-wintering crop of oil-seed rape (Brassica napus L.) and its correlation with changes in crop growth. Planta 185: 279–286.

    Article  Google Scholar 

  • Farage P.K., Long S.P., Lechner E.G. & Baker N.R. 1991. The sequence of change within the photo synthetic appara tus of wheat following short-term exposure to ozone. Plant Physiol. 95: 529–535.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar G.D. & Sharkey T.D. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33: 317–345.

    Article  CAS  Google Scholar 

  • Farquhar G.D., Von Caemmerer S. & Berry J.A. 1980. A biochemical model of photo synthetic (CO2) assimilation in leaves of C3 species. Planta 149: 78–90.

    Article  CAS  Google Scholar 

  • Field C.B., Ball J.T. & Berry J.A. 1989. Photosynthesis: principles and field techniques. In: Pearcy J.W., Ehleringer J., Mooney H.A. & Rundel P.W. (eds), Plant Physiological Ecology: Field Methods and Instrumentation, pp. 208–253, Chapman & Hall, London.

    Google Scholar 

  • Genty B., Briantais J.-M. & Baker N.R. 1989. The relationship between the quantum yield of photo synthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87–92.

    Article  CAS  Google Scholar 

  • Genty B., Harbinson J. & Baker N.R. 1990. Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions. Plant Physiol. Biochem. 28: 1–10.

    CAS  Google Scholar 

  • Harbinson J. & Headley C.L. 1988. The kinetics of P700 reduction in leaves: a novel in situ probe of thylakoid functioning. Plant Cell Environ. 12: 357–369.

    Article  Google Scholar 

  • Harbinson J. & Woodward F.I. 1987. The use of light-induced absorbance changes at 820nm to monitor the oxidation state of P700. Plant Cell Env. 10: 131–140.

    CAS  Google Scholar 

  • Harley P.C., Thomas R.B., Reynolds J.F. & Strain B.R. 1991. Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ. (in press).

    Google Scholar 

  • Ireland C.R., Long S.P. & Baker N.R. 1989. An integrated portable apparatus for the simultaneous field measurement of photo synthetic CO2 and water vapour exchange, light adsorption and chlorophyll fluorescence of attached leaves. Plant Cell Environ. 12: 947–958.

    Article  Google Scholar 

  • Long S.P. 1985. Leaf gas exchange. In: Barber J. & Baker N.R. (eds), Mechanisms and the Environment, pp. 453–500, Elsevier, Amsterdam.

    Google Scholar 

  • Long S.P. 1989. Gas exchange of plants in the field. In: Grubb P.J. & Whittaker J.B. (eds), Toward a More Exact Ecology pp. 33–62, 30th Symposium of the British Ecological Society, Blackwell, Oxford.

    Google Scholar 

  • Long S.P. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environ. 14: 729–739.

    Article  CAS  Google Scholar 

  • Long S.P. & Drake B.G. 1991. Effect of the long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge, Scirpus olneyi. Plant Physiol. 96: 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Long S.P. & Drake B.G. 1992. Photo synthetic CO2 assimilation and rising atmospheric CO2 concentrations. In: Baker N.R. & Thomas H. (eds.), Topics in Photosynthesis vol. 11, Elsevier, Amsterdam (in press).

    Google Scholar 

  • Long S.P. & Hällgren J.-E. 1992. Photosynthetic gas exchange. In: Hall D.O, Scurlock J.M.O, Bolhár-Nordenkampf S.R., Leegood R.C. & Long S.P. (eds.), Techniques in Photosynthesis and Bioproductivity, Chapman & Hall, London (in press).

    Google Scholar 

  • McMurtrie R.E. & Wang Y.-P. 1992. Mathematical models of the photo synthetic response of plant stands to rising CO2 levels and temperatures. Plant Cell Environ. (in press).

    Google Scholar 

  • Mott, K.A. 1990. Sensing of atmospheric CO2 by plants. Plant Cell Environ. 13: 731–737.

    Article  CAS  Google Scholar 

  • Ögren E. & Sjöström M. 1990. Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy. Planta 181: 560–567.

    Article  Google Scholar 

  • Ögren E. & Baker N.R. 1985. Evaluation of a technique for the measurement of chlorophyll fluorescence from leaves exposed to continuous white light. Plant Cell Environ. 8: 539–547.

    Article  Google Scholar 

  • Öquist G., Hällgren J.-E. & Brunes L. 1978. An apparatus for measuring photo synthetic quantum yields and quanta absorption spectra of intact plants. Plant Cell Environ. 1: 21–27.

    Article  Google Scholar 

  • Sage R.F., Sharkey T.D. & Seemann J.R. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89: 590–596.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U. & Bilger W. 1987. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorimeter. Photosyn. Res. 10: 51–62.

    Article  Google Scholar 

  • Schreiber U., Klughammer C. & Neubauer C. 1988. Measuring P700 absorbance changes around 830 nm with a new type of pulse modulation system. Z. Naturforsch. 43c: 686–698.

    Google Scholar 

  • Sharkey T.D. & Vanderveer P.J. 1989. Stromal phosphate concentration is low during feedback-limited photosynthesis. Plant Physiol. 91: 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Stitt M. 1991. Rising CO2 levels and their potential significance for carbon flow in photo synthetic cells. Plant Cell Environ. 14: 741–762.

    Article  CAS  Google Scholar 

  • Wong S.C., Cowan I.R. & Farquhar G.D. 1979. Stomatal conductance correlates with photo synthetic capacity. Nature 282: 424–426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Rozema H. Lambers S. C. Van de Geijn M. L. Cambridge

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Long, S.P., Baker, N.R., Raines, C.A. (1993). Analysing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration. In: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (eds) CO2 and biosphere. Advances in vegetation science, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1797-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1797-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4791-3

  • Online ISBN: 978-94-011-1797-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics