Skip to main content

Implications of increased carbon dioxide levels for carbon input and turnover in soils

  • Chapter
Book cover CO2 and biosphere

Part of the book series: Advances in vegetation science ((AIVS,volume 14))

Abstract

The complexity of the plant-soil system in its interaction with the changing climate is discussed. It is shown that processes at the level of organic matter inputs into the soil and the fluxes and pools involved in the global cycle are not known in sufficient detail to allow an estimation of the future quantitative shifts. Even the direction in which the level of stored carbon in the soil organic matter pool will develop is not clear. The importance of the nitrogen cycle, which is intimately coupled to the carbon cycle through the turnover of soil organic matter is underlined. In its turn, the mineralisation of soil organic matter takes place at a rate which is highly dependent on the nature of inputs and the availability of mineral nutrients.

Aspects of shifts in temperature, changes in cultivation practices (reduced tillage) and unintended spreading of inputs in chemical N-fertilizers are of great importance at a regional and global scale.

The complexity of the interactions in the process of mineralisation do require further studies to clarify the point whether a substantial and durable additional storage of carbon in soil organic matter is likely, or that shifts in temperature will cause an overriding acceleration of the mineralisation, and trigger a corresponding net release of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, L. H., Vu, J. C. V., Valle, R. R., Boote, K. J. & Jones, P. H. 1988. Nonstructural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop Sci. 28: 84–94.

    Article  Google Scholar 

  • Ayanaba, A. & Jenkinson, D. S. 1990. Decomposition of carbon-14 labeled ryegrass and maize under tropical con ditions. Soil Sci. Soc. Am. J. 54: 112–115.

    Article  Google Scholar 

  • Berendse, F. 1990. Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol. 78: 413–427.

    Article  Google Scholar 

  • Bohn, H.L. 1978. On organic soil carbon and CO2. Tellus 30: 472–475.

    Article  CAS  Google Scholar 

  • Bonde, T. A. 1991. Size and dynamics of active soil organic matter fraction as influenced by soil management. Linkoping Studies in Arts and Science 63 (PhD Thesis).

    Google Scholar 

  • Box, J. E., Meisner, C. A., Hook, J. E., Kvien, C. S., Karnok, E. J. & Brenerman, T. B. 1992. The effect of water stress on peanut (Arachis hypogaeaL.) rooting. Proc. Intern. Root Res. Soc., Vienna 1991. (in press).

    Google Scholar 

  • Brouwer, R. 1983. Functional equilibrium: sense or nonsense? Neth. J. Agric. Sci. 31: 335–348.

    Google Scholar 

  • Buol, S. W., Sanchez, P. A., Weed, S. B. & Kimble, J. M. 1990. Predicted impact of climatic warming on soil properties and use. In: Kimball, B. A., Rosenberg, N. J. & Allen, L. H. Jr, (eds), Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture. pp 71–82. ASA Spec. Pub. nr 53.

    Google Scholar 

  • Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K. & Schimel, D. S. 1989. Texture, climate, and cultivation effects on soil organic matter content in US grassland soils. Soil Sci. Soc. Amer. J. 53: 800–805.

    Article  Google Scholar 

  • Chen, W., Coleman, D. C. & Box, J. E. 1991. Measuring root turnover using the minirhizotron technique. Agric. Ecosyst. Environ. 34: 261–267.

    Article  Google Scholar 

  • Couteaux, M. M., Mousseau, M., Celerier, M. L. & Bottner, P. 1991. Atmospheric CO2 increase and litter quality: decomposition of sweet chestnut leaf litter under different animal food web complexity. Oikos 61: 54–64.

    Article  Google Scholar 

  • Duxbury, J. M., Oades, J. M. & Uehara, G. 1989. Dynamics of soil organic matter in tropical soils. University of Hawaii Press, Honolulu, Hawaii.

    Google Scholar 

  • Erisman, J. W., De Leeuw, F. A. A. M. & Van Aalst, R. M. 1987. Deposition of the most important acidifying components in the Netherlands in 1980–1986. 57 pp, Rept. nr. 228473001, RIVM, Bilthoven, The Netherlands.

    Google Scholar 

  • Fusseder, A. 1987. The longevity and activity of the primary root of maize. Plant Soil 101: 257–265.

    Article  Google Scholar 

  • Goudriaan, J. 1993. Interaction of ocean and biosphere in their transient responses to increasing atmospheric CO2. In: Rozema, J., Lambers, H., Van de Geijn, S. C. & Cambridge, M. L., (eds), CO2 and Biosphere. Vegetatio: 104/ 105: 329–337.

    Chapter  Google Scholar 

  • Goudriaan, J. 1990. Atmospheric CO2, global carbon fluxes and the biosphere. In: Rabbinge, R., Goudriaan, J., Van Keulen, H., Penning de Vries, F. W. T. & Van Laar, H. H. (eds) Theoretical Production Ecology: reflections and prospects. pp 17–40. PUDOC Wageningen.

    Google Scholar 

  • Helal, H. M. & Sauerbeck, D. 1991. Short term determination of the actual respiration rate of intact plant roots. In: McMichael, B. L. & Persson, H. (eds), Plant Roots and their Environment. pp 88–92. Elsevier Scient. Publ., Amsterdam.

    Chapter  Google Scholar 

  • Janssen, B. H. 1984. A simple method for calculating decomposition and accumulation of ‘young’ soil organic matter. Plant and Soil 76: 297–304.

    Article  Google Scholar 

  • Jansson, S. L. 1958. Tracer studies on nitrogen transformations in soil with special attention to mineralisation-immobilisation relationships. Landbrukshoegsk. Ann. 24: 101–313.

    CAS  Google Scholar 

  • Jenkinson, D. S., Adams, D. E. & Wild, A. 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature 351: 304–306.

    Article  CAS  Google Scholar 

  • Jenkinson, D. S. & Rayner, J. H. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123: 298–305.

    Article  CAS  Google Scholar 

  • Jenny, H. 1980a. Biomass and humus. In: Jenny, H. The Soil Resource: Origin and behavior, Ch.5, pp 113–146. Springer Verlag, New York.

    Google Scholar 

  • Jenny, H. 1980b. The time factor of system genesis. In: Jenny, H. The Soil Resource: Origin and behavior, Ch.9, pp 207–245. Springer Verlag, New York.

    Google Scholar 

  • Keith, H., Oades, J. M. & Martin, J. K. 1986. Input of carbon to soil from wheat plants. Soil Biol. Biochem. 18: 445–449.

    Article  CAS  Google Scholar 

  • Kimball, B. 1983. Carbon dioxide and agricultural yield: An assemblage of 430 prior observations. Agron. J. 75: 779–788.

    Article  Google Scholar 

  • Krueger, K. W. & Trappe, J. M. 1967. Food reserves and seasonal growth of Douglas-fir seedlings. Forest Sci. 13: 192–202.

    Google Scholar 

  • Kurz, W. A. & Kimmins, J. P. 1987. The influence of site quality on tree resource allocation to fine roots and its effect on harvestable productivity of coastal Douglas-fir stands. Fac. of Forestry, Univ. British Columbia, Vancouver, Canada, FRDA Report no 034, 103 pp.

    Google Scholar 

  • Lekkerkerk, L. J. A., Van de Geijn, S. C. & Van Veen, J. A. 1990. Effects of elevated atmospheric CO2 levels on the carbon economy of a soil planted with wheat. In: Bouwman, A. F. (ed), Soils and the greenhouse effect. pp 423–429. John Wiley & Sons.

    Google Scholar 

  • Liljeroth, E., Van Veen, J. A. & Miller, H. J. 1990. Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil nitrogen concentrations. Soil Biol. Biochem. 22: 1015–1021.

    Article  CAS  Google Scholar 

  • Louwerse, W., Sibma, L. & Van Kleef, J. 1990. Crop photosynthesis, respiration and dry matter production of maize. Neth. J. Agric. Sci. 38: 95–108.

    Google Scholar 

  • Lynch, J. M. & Panting, L. M. 1980. Cultivation and the soil biomass. Soil Biol. Biochem. 12: 29–33.

    Article  Google Scholar 

  • Mann, L. K. 1986. Changes in soil carbon storage after cultivation. Soil Sci. 142: 279–288.

    Article  CAS  Google Scholar 

  • Mauney, J. R., Guinn, G., Fry, K. E. & Hesketh, J. D. 1979. Correlation of photosynthesis carbon dioxide uptake and carbohydrate accumulation in cotton, soybean, sunflower and sorghum. Photosynthetica 13: 260–266.

    Google Scholar 

  • Merillo, J. M., Aber, J. D. & Muratore, J. F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626.

    Article  Google Scholar 

  • Merckx, R., Den Hartog, A. & Van Veen, J. A. 1985. Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biol. Biochem. 17: 565–569.

    Article  Google Scholar 

  • Merckx, R., Dijkstra, A., Den Hartog, A. & Van Veen, J. A. 1987. Production of root derived material and associated microbial growth in soil at different nutrient levels. Biol. Fert. Soils 5: 126–132.

    Article  Google Scholar 

  • Oades, J. M., Gillman, G. P., & Uehara, G. 1989. Interactions of soil organic matter and variable-charge clays. In: Coleman, D. C., Oades, J. M. & Uehara, G. (eds), Dynamics of soil organic matter in tropical soils. Univ. of Hawaii Press, Honolulu, Hawaii.

    Google Scholar 

  • Oades, J. M. 1989. The retention of organic matter in soils. Biogeochem. 5: 35–70.

    Article  Google Scholar 

  • Olsthoorn, A. F. M. 1991. Fine root biomass of two Douglasfir stands on sandy soils in the Netherlands. 1. Root biomass in early summer. Neth. J. Agric. Sci. 39: 49–60.

    Google Scholar 

  • Olsthoorn, A. F. M. & Tiktak, A. 1991. Fine root biomass of two Douglas-fir stands on sandy soils in the Netherlands. 2. Periodicity of fine root growth and estimation of below-ground carbon allocation. Neth. J. Agric. Sci. 39: 61–77.

    Google Scholar 

  • Post, W. M. & Mann, L. K. 1990. Changes in soil organic carbon and nitrogen as a result of cultivation. In: Bouwman,A. F. (ed), Soils and the greenhouse effect. pp 401–406. John Wiley & Sons.

    Google Scholar 

  • Rosswall, T. 1983. The nitrogen cycle. In: Bolin, B. & Cook, R. B. (eds), The major biogeochemical cycles and their interactions. SCOPE 21, pp. 46–50, John Wiley & Sons.

    Google Scholar 

  • Santruckova, H. & Straskraba, M. 1991. On the relationship between specific respiration activity and microbial biomass in soils. Soil Biol. Biochem. 23: 525–532.

    Article  Google Scholar 

  • Smucker, A. J. M., Nunez-Barrios, A. & Ritchie, J. 1991. Root dynamics in drying soil environments. Belowgr. Ecology 2: 4–5.

    Google Scholar 

  • Swinnen, J. & Van Veen, J. A. 1992. Unterscheidung von Wurzel-und Microbielles Atmung im Boden durch Exudatmarkierung. Landwirtsch. Forsch. (in press).

    Google Scholar 

  • Taylor, B. R., Parkinson, D. & Parsons, W. F. J. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70: 97–104.

    Article  Google Scholar 

  • Tilman, D. 1984. Plant dominance along an experimental nutrient gradient. Ecology 65: 1445–1453.

    Article  Google Scholar 

  • Titlyanova, A. A. 1991. Productivity in grasslands of the USSR. In: McMichael, B. L. & Persson, H. (eds), Plant Roots and their Environment. pp 374–380, Elsevier Scient. Publ., Amsterdam.

    Chapter  Google Scholar 

  • Van der Linden, A. M. A., Van Veen, J. A. & Frissel, M. J. 1987. Modelling soil organic matter levels after long-term applications of crop residues, farmyard and green manures. Plant Soil 101: 21–28.

    Article  Google Scholar 

  • Van Veen, J. A. 1987. The use of simulation models of the turnover of soil organic matter: An intermediate report. Transactions of the XIII Congress of the International Congress of Soil Science (ISSS) Vol. VI: 626–635.

    Google Scholar 

  • Van Veen, J. A. & Kuikman, P. J. 1990. Soil structural aspects of decomposition of organic matter by microorganisms. Biogeochem. 11: 213–233.

    Article  Google Scholar 

  • Van Veen, J. A., Liljeroth, E., Lekkerkerk, L. J. A. & Van de Geijn, S. C. 1991. Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecol. Appl. 1: 175–181.

    Article  Google Scholar 

  • Van Veen, J. A., Merckx, R. & Van de Geijn, S. C. 1989. Plant-and soil-related controls of the flow of carbon from roots through the soil microbial biomass. Plant Soil 115: 43–52.

    Article  Google Scholar 

  • Vogt, K. A. & Bloomfield, J. 1991. Root turnover and senescence. In: Waisel, Y., Eshel, A. & Kafkafi, U. (eds), Plant Roots: The Hidden Half. pp 287–306. Marcel Dekker, Inc.

    Google Scholar 

  • Vogt, K. A., Vogt, D. J. & Bloomfield, J. 1991. Input of organic matter to the soil by tree roots. In: McMichael, B. L. & Persson, H. (eds), Plant Roots and their Environment. pp 171–190. Elsevier Scient. Publ. Amsterdam.

    Chapter  Google Scholar 

  • Vorony, R. P., Van Veen, J. A. & Paul, E. A. 1981. Organic carbon dynamics in grassland soils. 2. Model validation and simulation of the long-term effects of cultivation and rainfall erosion. Can. J. Soil Sci. 61: 211–224.

    Article  Google Scholar 

  • Wood, C. W., Westfall, D. G. & Peterson, G. A. 1991. Soil carbon and nitrogen changes on initiation of no-till cropping systems. Soil Sci. Soc. Amer. J. 55: 470–476.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Rozema H. Lambers S. C. Van de Geijn M. L. Cambridge

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van de Geijn, S.C., Van Veen, J.A. (1993). Implications of increased carbon dioxide levels for carbon input and turnover in soils. In: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (eds) CO2 and biosphere. Advances in vegetation science, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1797-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1797-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4791-3

  • Online ISBN: 978-94-011-1797-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics