Skip to main content

Increasing CO2 and plant-plant interactions: effects on natural vegetation

  • Chapter

Part of the Advances in vegetation science book series (AIVS,volume 14)

Abstract

Plant species and functional groups of species show marked differences in photosynthesis and growth in relation to rising atmospheric CO2 concentrations through the range of the 30 % increase of there cent past and the 100 % increase since the last glaciation. A large shift was found in the compositional mix of 26 species of C3’s and 17 species of C4’s grown from a native soil seed bank in a competitive mode along a CO2 gradient that approximated the CO2 increase of the past 150 years and before. The biomass of C3’s increased from near zero to 50 % of the total while that of the C4’s was reduced 25 % as CO2 levels approached current ambient. The proposition that acclimation to rising CO2 will largely negate the fertilization effect of higher CO2 levels on C3’s is not supported. No signs of photo synthetic acclimation were evident for Avena sativa, Prosopis glandulosa, and Schizachyrium scoparium plants grown in subambient CO2. The effects of changing CO2 levels on vegetation since the last glaciation are thought to have been at least as great, if not greater, than those which should be expected for a doubling of current CO2 levels. Atmospheric CO2 concentrations below 200 ppm are thought to have been instrumental in the rise of the C4 grasslands of North America and other extensive C4 grasslands and savannas of the world. Dramatic invasion of these areas by woody C3 species are accompanying the historical increase in atmospheric CO2 concentration now in progress.

Keywords

  • Vegetation Change
  • Subambient CO2
  • C3
  • C4
  • Paleoclimatology
  • Acclimation
  • Competition

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-1797-5_11
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-1797-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, L. H. Jr., Bisbal, E. C., Boote, K. J., & Jones, P. H. 1991. Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. Agron. J. 83: 875–883.

    CrossRef  CAS  Google Scholar 

  • Amthor, J. S. 1991. Respiration in a future, higher-CO2 world. Plant, Cell Environ. 14: 13–20.

    CrossRef  CAS  Google Scholar 

  • Baker, J. T., Allen, L. H. Jr., & Boote, K. J. 1990. Growth and yield responses of rice to carbon dioxide concentration. J. Agric. Sci. 115: 313–320.

    CrossRef  CAS  Google Scholar 

  • Barnola, J. M., Raynaud, D., Korotkevich, Y. S. and Larius, C. 1987. Vostock ice core provides 160, 000-year record of atmospheric CO2. Nature 329: 408–414.

    CrossRef  CAS  Google Scholar 

  • Bazzaz, F. A., 1990. The response of natural ecosystems to the rising global CO2 levels. Ann. Rev. Ecol. & Syst. 21:167–196.

    CrossRef  Google Scholar 

  • Black, C. C., Chen, T. M. & Brown, R. H. 1969. Biochemical basis for plant competition. Weed Sci. 17: 338–344.

    CAS  Google Scholar 

  • Blackman, V. H. 1919. The compound interest law of plant growth. Annals of Bot. 33: 353–360.

    Google Scholar 

  • Billings, W. D., Peterson, K. M., Luken, J. O. & Mortensen, D. A. 1984. Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65: 26–29.

    CrossRef  Google Scholar 

  • Bunce, J. A. 1990. Short-and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide.Annals of Bot. 65: 637–642.

    CAS  Google Scholar 

  • Campbell, W. J., Allen, L. H. Jr, & Bowes, G. 1988. Effects of CO2 concentration on rubisco activity, amount and photosynthesis in soybean leaves. Plant Physiol. 88: 1310–1316.

    PubMed  CrossRef  CAS  Google Scholar 

  • Carlson, R. W. & Bazzaz, F. A. 1980. The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration and water use efficiency of plants. In: Singh, J. J. & Deeppak, A. (eds), Symposium on Environmental and Cli matic Impact of Coal Utilization. Inst. for Atmos. Optics and Remote Sensing, pp 609–622. Hampton, VA, USA.

    Google Scholar 

  • Carter, D. R. & Peterson, K. M. 1983. Effects of CO2-enriched atmosphere on the growth and competitive interaction of a C3 and a C4 grass. Oecologia 58: 188–193.

    CrossRef  Google Scholar 

  • Correll, D. L. & Johnston, M. C. 1979. Manual of Vascular Plants of Texas. Univ. Texas Press, Dallas, TX, USA.

    Google Scholar 

  • Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J. and Whigham, D. F. 1989. Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia 78: 20–26.

    CrossRef  Google Scholar 

  • Curtis P. S., Baulduman, L. M., Drake, B. G. and Whigham, D. F. 1990. Elevated atmospheric CO2 effects on below-ground processes in C3 and C4 estuarine marsh communities. Ecology 71: 2001–2006.

    CrossRef  Google Scholar 

  • Delmas, R. J., Ascencio, J. & Legrand, M. 1980. Polar ice evidence that atmospheric CO2 20, 000 yr BP was 50 % of present. Nature 284: 155–157.

    CrossRef  CAS  Google Scholar 

  • Ehleringer, J. R. & Pearcy, R. W. 1983. Variations in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol. 73: 555–559.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ehleringer, J. R., Sage, R. F., Flanagan, L. B. & Pearcy, R. W. 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecol. & Evol. 6: 95–99.

    CrossRef  CAS  Google Scholar 

  • Gifford, R. M., Lambers, H. & Morison, J. I. L. 1985. Respiration of crop species under CO2 enrichment. Physiol. Plant. 63: 351–356.

    CrossRef  Google Scholar 

  • Gould, F. W. 1975. Texas Plants -A Checklist and Ecological Summary. Texas Agric. Exper. Sta. MP-585.

    Google Scholar 

  • Graham, R. W. & Grimm, E. C. 1990. Effects of global climate change on the patterns of terrestrial biological communities. Trends in Ecol. and Evol. 5: 289–292.

    CrossRef  CAS  Google Scholar 

  • Grime, J. P. 1979. Plant Strategies and Vegetation Processes. John Wiley & Sons, New York.

    Google Scholar 

  • Grulke, N. E., Reichers, G. H., Oechel, W. C., Hjelm, U. & Jaeger, C. 1990. Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia 83: 485–494.

    CrossRef  Google Scholar 

  • Hesketh, J. D. 1963. Limitations to photosynthesis responsible for differences among species. Crop Sci. 3: 493–496.

    CrossRef  Google Scholar 

  • Hillbert, D. W., Prudhomme, T. I. & Oechel, W. C. 1987. Response of tussock tundra to elevated carbon dioxide regimes: analysis of ecosystem CO2 flux through nonlinear modeling. Oecologia 72: 466–472.

    CrossRef  Google Scholar 

  • Idso, S. B. 1989a. Carbon Dioxide and Global Change: Earth in Transition. IBR Press, Tempe, Arizona.

    Google Scholar 

  • Idso, S. B. 1989b. A problem for paleoclimatology? Quaternary Res. 31: 433–434.

    CrossRef  Google Scholar 

  • Idso, S. B., Allen, S. G. & Kimball, B. A. 1990. Growth response of water lily to atmospheric CO2 enrichment. Aquat. Bot. 37: 87–92.

    CrossRef  Google Scholar 

  • Idso, S. B., Kimball, B. A. & Allen, S. G. 1991. CO2 enrichment of sour orange trees: two and a half years into a long-term experiment. Plant, Cell Environ. 14: 351–353.

    CrossRef  Google Scholar 

  • Idso, S. B., Kimball, B. A., Anderson, M. G. & Mauney, J. R. 1987. Effects of atmospheric CO2 enrichment on plant growth: The interactive role of temperature. Agric., Ecosystems Environ. 20: 1–10.

    CrossRef  Google Scholar 

  • Johnson, H. B. & Mayeux, H. S. (in press). A view on spe cies additions and deletions and the balance of nature. J. Range Manage.

    Google Scholar 

  • Kimball, B. A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agron J. 75: 779–788.

    CrossRef  Google Scholar 

  • Kramer, P. J. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience 31: 29–33.

    CrossRef  CAS  Google Scholar 

  • Long, S. P. & Hutchin, P. R. 1991. Primary production in grasslands and coniferous forests with climate change: an overview. Ecol. Appl. 1: 139–156.

    CrossRef  Google Scholar 

  • LaMarche, V. C. Jr., Graybill, H. C., Fritts, H. C. & Rose, M. R. 1984. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225: 1019–1021.

    PubMed  CrossRef  Google Scholar 

  • Lemon, E. R. 1983. CO2 and Plants. AAAS Selected Symposium. Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Malcolm, W. M. 1966. Biological interactions. Bot. Review 32: 243–254.

    CrossRef  Google Scholar 

  • Mayeux, H. S., Johnson, H. B. & Polley, H. W. 1991. Global change and vegetation dynamics. In: James, F. J., Evans, J. D., Ralphs, M. H. & Child, R. D. (eds), Noxious Range Weeds, pp. 62–74. Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Moore, P. D. 1989. Some ecological implications of paleoatmospheric variations. J. Geol. Soc., London 146: 183–186.

    CrossRef  Google Scholar 

  • Morison, J. I. L. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell Environ. 8: 467–474.

    CrossRef  Google Scholar 

  • Neftel, A., Moore, E., Oeschger, H. & Stauffer, B. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315: 45–47.

    CrossRef  CAS  Google Scholar 

  • Neustadt, M. I. 1984. Holocene peatland development. In: Velichko, A. A. (ed), Late Quaternary Environments of the Soviet Union, pp. 201–296. Univ. Minnisota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Oechel, W. C. & Strain, B. R. 1985. Native species responses to increased carbon dioxide concentration. In: Strain, B. R. & Cure, J. D. (eds), Direct Effects of Increasing Carbon Dioxide on Vegetation, (DOE/ER-0238), pp. 117–154. U. S. Dept. Energy, Washington, DC, USA.

    Google Scholar 

  • Osmond, C. B., Björkman, O., & Anderson, D. J. 1980. Physiological Processes in Plant Ecology. Springer-Verlag, Berlin.

    CrossRef  Google Scholar 

  • Osmond, C. B., Winter, K. & Ziegler, H. 1982. Functional significance of different pathways of CO2 fixation in photosynthesis. In: Encyclopedia of Plant Physiology, New Series. 12B. Springer-Verlag, Berlin.

    Google Scholar 

  • Overdieck, D. & Reining, F. 1986. Effect of atmospheric CO2 enrichment on perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) competing in managed model-ecosystems I. Phytomass and production. Acta Oecologica 7: 357–366.

    Google Scholar 

  • Overpeck, J. T., Bartlein, P. J. & Webb, T. III. 1991. Potential magnitude of future vegetation change in eastern North America: Comparisons with the past. Science 254: 692–695.

    PubMed  CrossRef  CAS  Google Scholar 

  • Patterson, D. T. & Flint E. P. 1980. Potential effects of global atmospheric CO2 enrichment on the growth and competitiveness of C3 and C4 weed and crop plants. Weed Sci. 28: 71–75.

    CAS  Google Scholar 

  • Patterson, D. T. & Flint, E. P. 1990. Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems. In: Kimball, B. A. (ed), Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture, pp. 83–110. ASA Spec. Publ. No. 53. Am. Soc. Agron., Madison, WI, USA.

    Google Scholar 

  • Pearcy, R. W. & Björkman, O. 1983. Physiological effects. In: Lemon, E. R. (ed), The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide, pp. 65–105. Am. Assoc. Adv. Sci., Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Reichers, G. H. & Strain, B. R. 1988. Growth of blue grama (Bouteloua gracilis) in response to atmospheric CO2 enrichment. Can. J. Bot. 66: 1570–1573.

    CrossRef  Google Scholar 

  • Sage, R. F., Sharkey, T. D. & Seemann, J. R. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89: 590–596.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sharkey, T. D. 1988. Estimating the rate of photorespiration in leaves. Physiol. Plant. 73: 147–152.

    CrossRef  CAS  Google Scholar 

  • Smith, B. N. 1976. Evolution of C4 photosynthesis in response to changes in carbon and oxygen concentrations in the atmosphere through time. Bio Systems 8: 24–32.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communties. Princeton Univ. Press, Princeton, NJ, USA.

    Google Scholar 

  • Trabalka, J. R., Edmonds, J. A., Reilly, J. M., Gardner, R. H. & Voorhees, L. D. 1985. Human alterations of the global carbon cycle and the projected future. In: Trabalka, J. R. (ed), Atmospheric Carbon Dioxide and the Global Carbon Cycle, pp 247–287. DOE/ER-0239, US Dept. Energy, Washington, DC, USA.

    Google Scholar 

  • Webb III, T. 1986. Is vegetation in equilibrium with climate? How to interpret late-Quarternary pollen data. Vegetatio 67: 75–91.

    CrossRef  Google Scholar 

  • Wells, P. V. 1983. Late quaternary vegetation of the great plains. Trans. Nebraska Acad. Sci. XI: 83–89.

    Google Scholar 

  • Woodward, F. I. 1987. Climate and Plant Distribution. Cambridge Univ. Press, London.

    Google Scholar 

  • Wray, S. M. & Strain, B. R. 1986. Response of two field perennials to interactions of CO2 enrichment and drought stress. Am. J. Bot. 73: 1486–1491.

    CrossRef  Google Scholar 

  • Wray, S. M. & Strain, B. R. 1987. Competition in old field perennials under CO2 enrichment. Ecology 68: 1116–1120.

    CrossRef  Google Scholar 

  • Zangerl, A. R. & Bazzaz, F. A. 1984. The response of plants to elevated CO2. Oecologia 62: 412–417.

    CrossRef  Google Scholar 

  • Ziska, L. H., Drake, B. G., and Chamberlain, S. 1990. Long-term photo synthetic response in single leaves of a C3 and C4 salt marsh species grown at elevated atmospheric CO2 in situ. Oecologia 83: 469–473.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnson, H.B., Polley, H.W., Mayeux, H.S. (1993). Increasing CO2 and plant-plant interactions: effects on natural vegetation. In: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (eds) CO2 and biosphere. Advances in vegetation science, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1797-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1797-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4791-3

  • Online ISBN: 978-94-011-1797-5

  • eBook Packages: Springer Book Archive