Advertisement

Increasing CO2 and plant-plant interactions: effects on natural vegetation

  • Hyrum B. Johnson
  • H. Wayne Polley
  • Herman S. Mayeux
Part of the Advances in vegetation science book series (AIVS, volume 14)

Abstract

Plant species and functional groups of species show marked differences in photosynthesis and growth in relation to rising atmospheric CO2 concentrations through the range of the 30 % increase of there cent past and the 100 % increase since the last glaciation. A large shift was found in the compositional mix of 26 species of C3’s and 17 species of C4’s grown from a native soil seed bank in a competitive mode along a CO2 gradient that approximated the CO2 increase of the past 150 years and before. The biomass of C3’s increased from near zero to 50 % of the total while that of the C4’s was reduced 25 % as CO2 levels approached current ambient. The proposition that acclimation to rising CO2 will largely negate the fertilization effect of higher CO2 levels on C3’s is not supported. No signs of photo synthetic acclimation were evident for Avena sativa, Prosopis glandulosa, and Schizachyrium scoparium plants grown in subambient CO2. The effects of changing CO2 levels on vegetation since the last glaciation are thought to have been at least as great, if not greater, than those which should be expected for a doubling of current CO2 levels. Atmospheric CO2 concentrations below 200 ppm are thought to have been instrumental in the rise of the C4 grasslands of North America and other extensive C4 grasslands and savannas of the world. Dramatic invasion of these areas by woody C3 species are accompanying the historical increase in atmospheric CO2 concentration now in progress.

Keywords

Vegetation Change Subambient CO2 C3 C4 Paleoclimatology Acclimation Competition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, L. H. Jr., Bisbal, E. C., Boote, K. J., & Jones, P. H. 1991. Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. Agron. J. 83: 875–883.CrossRefGoogle Scholar
  2. Amthor, J. S. 1991. Respiration in a future, higher-CO2 world. Plant, Cell Environ. 14: 13–20.CrossRefGoogle Scholar
  3. Baker, J. T., Allen, L. H. Jr., & Boote, K. J. 1990. Growth and yield responses of rice to carbon dioxide concentration. J. Agric. Sci. 115: 313–320.CrossRefGoogle Scholar
  4. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. and Larius, C. 1987. Vostock ice core provides 160, 000-year record of atmospheric CO2. Nature 329: 408–414.CrossRefGoogle Scholar
  5. Bazzaz, F. A., 1990. The response of natural ecosystems to the rising global CO2 levels. Ann. Rev. Ecol. & Syst. 21:167–196.CrossRefGoogle Scholar
  6. Black, C. C., Chen, T. M. & Brown, R. H. 1969. Biochemical basis for plant competition. Weed Sci. 17: 338–344.Google Scholar
  7. Blackman, V. H. 1919. The compound interest law of plant growth. Annals of Bot. 33: 353–360.Google Scholar
  8. Billings, W. D., Peterson, K. M., Luken, J. O. & Mortensen, D. A. 1984. Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65: 26–29.CrossRefGoogle Scholar
  9. Bunce, J. A. 1990. Short-and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide.Annals of Bot. 65: 637–642.Google Scholar
  10. Campbell, W. J., Allen, L. H. Jr, & Bowes, G. 1988. Effects of CO2 concentration on rubisco activity, amount and photosynthesis in soybean leaves. Plant Physiol. 88: 1310–1316.PubMedCrossRefGoogle Scholar
  11. Carlson, R. W. & Bazzaz, F. A. 1980. The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration and water use efficiency of plants. In: Singh, J. J. & Deeppak, A. (eds), Symposium on Environmental and Cli matic Impact of Coal Utilization. Inst. for Atmos. Optics and Remote Sensing, pp 609–622. Hampton, VA, USA.Google Scholar
  12. Carter, D. R. & Peterson, K. M. 1983. Effects of CO2-enriched atmosphere on the growth and competitive interaction of a C3 and a C4 grass. Oecologia 58: 188–193.CrossRefGoogle Scholar
  13. Correll, D. L. & Johnston, M. C. 1979. Manual of Vascular Plants of Texas. Univ. Texas Press, Dallas, TX, USA.Google Scholar
  14. Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J. and Whigham, D. F. 1989. Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia 78: 20–26.CrossRefGoogle Scholar
  15. Curtis P. S., Baulduman, L. M., Drake, B. G. and Whigham, D. F. 1990. Elevated atmospheric CO2 effects on below-ground processes in C3 and C4 estuarine marsh communities. Ecology 71: 2001–2006.CrossRefGoogle Scholar
  16. Delmas, R. J., Ascencio, J. & Legrand, M. 1980. Polar ice evidence that atmospheric CO2 20, 000 yr BP was 50 % of present. Nature 284: 155–157.CrossRefGoogle Scholar
  17. Ehleringer, J. R. & Pearcy, R. W. 1983. Variations in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol. 73: 555–559.PubMedCrossRefGoogle Scholar
  18. Ehleringer, J. R., Sage, R. F., Flanagan, L. B. & Pearcy, R. W. 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecol. & Evol. 6: 95–99.CrossRefGoogle Scholar
  19. Gifford, R. M., Lambers, H. & Morison, J. I. L. 1985. Respiration of crop species under CO2 enrichment. Physiol. Plant. 63: 351–356.CrossRefGoogle Scholar
  20. Gould, F. W. 1975. Texas Plants -A Checklist and Ecological Summary. Texas Agric. Exper. Sta. MP-585.Google Scholar
  21. Graham, R. W. & Grimm, E. C. 1990. Effects of global climate change on the patterns of terrestrial biological communities. Trends in Ecol. and Evol. 5: 289–292.CrossRefGoogle Scholar
  22. Grime, J. P. 1979. Plant Strategies and Vegetation Processes. John Wiley & Sons, New York.Google Scholar
  23. Grulke, N. E., Reichers, G. H., Oechel, W. C., Hjelm, U. & Jaeger, C. 1990. Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia 83: 485–494.CrossRefGoogle Scholar
  24. Hesketh, J. D. 1963. Limitations to photosynthesis responsible for differences among species. Crop Sci. 3: 493–496.CrossRefGoogle Scholar
  25. Hillbert, D. W., Prudhomme, T. I. & Oechel, W. C. 1987. Response of tussock tundra to elevated carbon dioxide regimes: analysis of ecosystem CO2 flux through nonlinear modeling. Oecologia 72: 466–472.CrossRefGoogle Scholar
  26. Idso, S. B. 1989a. Carbon Dioxide and Global Change: Earth in Transition. IBR Press, Tempe, Arizona.Google Scholar
  27. Idso, S. B. 1989b. A problem for paleoclimatology? Quaternary Res. 31: 433–434.CrossRefGoogle Scholar
  28. Idso, S. B., Allen, S. G. & Kimball, B. A. 1990. Growth response of water lily to atmospheric CO2 enrichment. Aquat. Bot. 37: 87–92.CrossRefGoogle Scholar
  29. Idso, S. B., Kimball, B. A. & Allen, S. G. 1991. CO2 enrichment of sour orange trees: two and a half years into a long-term experiment. Plant, Cell Environ. 14: 351–353.CrossRefGoogle Scholar
  30. Idso, S. B., Kimball, B. A., Anderson, M. G. & Mauney, J. R. 1987. Effects of atmospheric CO2 enrichment on plant growth: The interactive role of temperature. Agric., Ecosystems Environ. 20: 1–10.CrossRefGoogle Scholar
  31. Johnson, H. B. & Mayeux, H. S. (in press). A view on spe cies additions and deletions and the balance of nature. J. Range Manage.Google Scholar
  32. Kimball, B. A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agron J. 75: 779–788.CrossRefGoogle Scholar
  33. Kramer, P. J. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience 31: 29–33.CrossRefGoogle Scholar
  34. Long, S. P. & Hutchin, P. R. 1991. Primary production in grasslands and coniferous forests with climate change: an overview. Ecol. Appl. 1: 139–156.CrossRefGoogle Scholar
  35. LaMarche, V. C. Jr., Graybill, H. C., Fritts, H. C. & Rose, M. R. 1984. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225: 1019–1021.PubMedCrossRefGoogle Scholar
  36. Lemon, E. R. 1983. CO2 and Plants. AAAS Selected Symposium. Westview Press, Boulder, CO, USA.Google Scholar
  37. Malcolm, W. M. 1966. Biological interactions. Bot. Review 32: 243–254.CrossRefGoogle Scholar
  38. Mayeux, H. S., Johnson, H. B. & Polley, H. W. 1991. Global change and vegetation dynamics. In: James, F. J., Evans, J. D., Ralphs, M. H. & Child, R. D. (eds), Noxious Range Weeds, pp. 62–74. Westview Press, Boulder, CO, USA.Google Scholar
  39. Moore, P. D. 1989. Some ecological implications of paleoatmospheric variations. J. Geol. Soc., London 146: 183–186.CrossRefGoogle Scholar
  40. Morison, J. I. L. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell Environ. 8: 467–474.CrossRefGoogle Scholar
  41. Neftel, A., Moore, E., Oeschger, H. & Stauffer, B. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315: 45–47.CrossRefGoogle Scholar
  42. Neustadt, M. I. 1984. Holocene peatland development. In: Velichko, A. A. (ed), Late Quaternary Environments of the Soviet Union, pp. 201–296. Univ. Minnisota Press, Minneapolis, MN, USA.Google Scholar
  43. Oechel, W. C. & Strain, B. R. 1985. Native species responses to increased carbon dioxide concentration. In: Strain, B. R. & Cure, J. D. (eds), Direct Effects of Increasing Carbon Dioxide on Vegetation, (DOE/ER-0238), pp. 117–154. U. S. Dept. Energy, Washington, DC, USA.Google Scholar
  44. Osmond, C. B., Björkman, O., & Anderson, D. J. 1980. Physiological Processes in Plant Ecology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  45. Osmond, C. B., Winter, K. & Ziegler, H. 1982. Functional significance of different pathways of CO2 fixation in photosynthesis. In: Encyclopedia of Plant Physiology, New Series. 12B. Springer-Verlag, Berlin.Google Scholar
  46. Overdieck, D. & Reining, F. 1986. Effect of atmospheric CO2 enrichment on perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) competing in managed model-ecosystems I. Phytomass and production. Acta Oecologica 7: 357–366.Google Scholar
  47. Overpeck, J. T., Bartlein, P. J. & Webb, T. III. 1991. Potential magnitude of future vegetation change in eastern North America: Comparisons with the past. Science 254: 692–695.PubMedCrossRefGoogle Scholar
  48. Patterson, D. T. & Flint E. P. 1980. Potential effects of global atmospheric CO2 enrichment on the growth and competitiveness of C3 and C4 weed and crop plants. Weed Sci. 28: 71–75.Google Scholar
  49. Patterson, D. T. & Flint, E. P. 1990. Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems. In: Kimball, B. A. (ed), Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture, pp. 83–110. ASA Spec. Publ. No. 53. Am. Soc. Agron., Madison, WI, USA.Google Scholar
  50. Pearcy, R. W. & Björkman, O. 1983. Physiological effects. In: Lemon, E. R. (ed), The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide, pp. 65–105. Am. Assoc. Adv. Sci., Westview Press, Boulder, CO, USA.Google Scholar
  51. Reichers, G. H. & Strain, B. R. 1988. Growth of blue grama (Bouteloua gracilis) in response to atmospheric CO2 enrichment. Can. J. Bot. 66: 1570–1573.CrossRefGoogle Scholar
  52. Sage, R. F., Sharkey, T. D. & Seemann, J. R. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89: 590–596.PubMedCrossRefGoogle Scholar
  53. Sharkey, T. D. 1988. Estimating the rate of photorespiration in leaves. Physiol. Plant. 73: 147–152.CrossRefGoogle Scholar
  54. Smith, B. N. 1976. Evolution of C4 photosynthesis in response to changes in carbon and oxygen concentrations in the atmosphere through time. Bio Systems 8: 24–32.PubMedCrossRefGoogle Scholar
  55. Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communties. Princeton Univ. Press, Princeton, NJ, USA.Google Scholar
  56. Trabalka, J. R., Edmonds, J. A., Reilly, J. M., Gardner, R. H. & Voorhees, L. D. 1985. Human alterations of the global carbon cycle and the projected future. In: Trabalka, J. R. (ed), Atmospheric Carbon Dioxide and the Global Carbon Cycle, pp 247–287. DOE/ER-0239, US Dept. Energy, Washington, DC, USA.Google Scholar
  57. Webb III, T. 1986. Is vegetation in equilibrium with climate? How to interpret late-Quarternary pollen data. Vegetatio 67: 75–91.CrossRefGoogle Scholar
  58. Wells, P. V. 1983. Late quaternary vegetation of the great plains. Trans. Nebraska Acad. Sci. XI: 83–89.Google Scholar
  59. Woodward, F. I. 1987. Climate and Plant Distribution. Cambridge Univ. Press, London.Google Scholar
  60. Wray, S. M. & Strain, B. R. 1986. Response of two field perennials to interactions of CO2 enrichment and drought stress. Am. J. Bot. 73: 1486–1491.CrossRefGoogle Scholar
  61. Wray, S. M. & Strain, B. R. 1987. Competition in old field perennials under CO2 enrichment. Ecology 68: 1116–1120.CrossRefGoogle Scholar
  62. Zangerl, A. R. & Bazzaz, F. A. 1984. The response of plants to elevated CO2. Oecologia 62: 412–417.CrossRefGoogle Scholar
  63. Ziska, L. H., Drake, B. G., and Chamberlain, S. 1990. Long-term photo synthetic response in single leaves of a C3 and C4 salt marsh species grown at elevated atmospheric CO2 in situ. Oecologia 83: 469–473.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Hyrum B. Johnson
    • 1
  • H. Wayne Polley
    • 1
  • Herman S. Mayeux
    • 1
  1. 1.Grassland, Soil and Water Research LaboratoryUSDA-Agricultural Research ServiceTempleUSA

Personalised recommendations