Skip to main content

Grain Boundary Design for Advanced Materials on the Basis of Grain Size Dependence of Grain Boundary Character Distribution (GBCD)

  • Chapter
  • 917 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 233))

Abstract

The grain size dependence of the grain boundary character distribution (GBCD) has been discussed in order to understand and predict grain boundary-controlled properties and performance of nanocrystalline materials. From the observation of grain size dependence of GBCD in ordinary polycrystalline materials produced by thermomechanical processing, the occurrence of a high fraction of law energy boundaries is predicted in fine grained materials However, since the GBCD depends strongly on processing method, a study of GBCD in nanocrystalline materials produced by well defined processing method is indispensable to full understanding and the grain boundary design and control for nanocrystalline materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gleiter, H. (1989), ‘Nanocrystalline Materials’, Prog.in Mater.Sci., 33, 223–315.

    Article  CAS  Google Scholar 

  2. Watanabe, T. (1984), ‘An Approach to Grain Boundary Design for Strong and Ductile Polycrystals’, Res Mechanica, 11, 47–84.

    CAS  Google Scholar 

  3. Watanabe, T. (1988), ‘The Potential of Grain Boundary Design in Materials Development’, Materials Forum, 11, 284–303.

    CAS  Google Scholar 

  4. Watanabe, T. (1989), ‘Grain Boundary Design for the Control of Intergranular Fracture’, Materials Science Fortin, 46, 25–48.

    Article  CAS  Google Scholar 

  5. Aust, K.T. and Palumbo, G. (1989), ‘Interfacial Control in Materials’, Proc.Intern. Symp.on Advanced Structural Materials, Pergamon Press, 215–226.

    Google Scholar 

  6. Gleiter, H. and Chalmers, B. (1972), ‘HighAngle Grain Boundaries’, Progress in Materials Science, 16, 1–274.

    Article  Google Scholar 

  7. Watanabe, T. (1988), ‘Tine Iriortarnce of Grain Bondary Character Distribution to Grain boundary Design’, Proc.Mat.Res.Soc., l22, 443–454.

    Article  CAS  Google Scholar 

  8. Watanabe, T. (1992), ‘Toughening of Brittle Materials by Grain Boundary Design and Control’, Proc.6th Intern.Conf.on Intergranular and Interphase Boundaries in Materials, Trans,Tech.Pub., in press.

    Google Scholar 

  9. Watanabe, T. (1992), ‘Grain Boundary Character Distribution Analysis of GrainGrowth-Related Phenomena in Polycrystalline Materials’, Proc.Intern.Conf.on Grain Growth in Polycrystalline Materials, Mater.Sci.Forum, 94–96, 209–220.

    Google Scholar 

  10. Wyrzykotski, J.W. and Grabski, M.W. (1986), ‘The Hall-Petch Relation in Aluminum and its Dependence on the Grain Boundary Structure’, Phil.Mag., 53, 505–520.

    Article  Google Scholar 

  11. Pumphrey, P.H. (1976), ‘Special High Angle Grain Boundaries’, Grain Boundary Structure, and Properties, Academic Press, London, 139–200.

    Google Scholar 

  12. Baker, T.N. ed. (1983), Yield.Flow and Fracture of Polycrystals, Appl.Sci.Pub.

    Google Scholar 

  13. Berger, A., Wilbrarndt, P.J. and Haasen, P. (1983), ‘Llrvelopment of the Recrystalliza tipi Texture in Tensile Deformed Aluminium Single Crystals-I HVEM Observation. Acta Meta1l., 31, 1433–1443.

    Article  CAS  Google Scholar 

  14. Watanabe, T. (1987), ‘Prediction of Change in Grain Boundary Energy during Grain Growth’, Scripta Metall., 21, 427–432.

    Article  CAS  Google Scholar 

  15. Watanabe, T., Fujii, H., Oikawa, H. and Arai, K.I., (1989), ‘Grain Boundaries in Rapidly Solidified and Annealed Fe-6.5mass%Si Polycrystalline Ribbons with High Ductility’, Acta Metall., 37, 941–952.

    Article  CAS  Google Scholar 

  16. Gao, P. and Gleiter, H. (1987), ‘High Resolution Electron Microscope Observation of Small Gold Crystals’, Acta Metall., 35, 1571–1575.

    Article  CAS  Google Scholar 

  17. Ganapathi, S.K. and Rigney, D.A. (1990), ‘An HREM Study of The Nanocrystalline Material Produced by Sliding Wear Processes’, Scripta Metall., 24, 1675–1678.

    Article  CAS  Google Scholar 

  18. Heilmann, P., Clark, W.A.T. and Rigney, D.A. (1983), ‘Orientation Determination of Subsurface Cells Generated by Sliding’, Acta Metall., 31, 1293–1305.

    Article  CAS  Google Scholar 

  19. Greer, A.L. (1991), ‘Grain Refinement in Rapidly Solidified Alloys’, Mater.Sci.Eng. A133, 16–21.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Watanabe, T. (1993). Grain Boundary Design for Advanced Materials on the Basis of Grain Size Dependence of Grain Boundary Character Distribution (GBCD). In: Nastasi, M., Parkin, D.M., Gleiter, H. (eds) Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures. NATO ASI Series, vol 233. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1765-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1765-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4775-3

  • Online ISBN: 978-94-011-1765-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics