Skip to main content

Zeolites in Fine Chemical Synthesis - Contribution to Environmental Protection

  • Chapter
Book cover Precision Process Technology

Abstract

Nowadays one has to consider environment in its broadest meaning, ranging from nature (purity of air and of water, protection of vegetation...) to the general appearance of factories and cities and one has also to take into consideration the worker’s environment. Of all the industrial activities, chemistry is certainly the one which has the worst reputation for polluting. However if there has been some spectacular accidents, this reputation for polluting has been largely exagerated in particular if we consider other sectors like the production of energy, car exhauste emissions etc. Yet, one cannot neglect the important role played by chemicals in every day life and the dependence of other activities (health, agriculture, automobile, equipments,...) on chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Venuto, P.B. and Landis, P.S. (1986) “Organic Catalysis over Crystalline Aluminosilicates”, Adv. Catal. Related Subjects 18, 259–371.

    Article  Google Scholar 

  2. Venuto, P.B. (1971) “Some Perspectives on Zeolite Catalysis”, Adv. Chem. Ser. 102, 260–283.

    Article  CAS  Google Scholar 

  3. Poutsma, M.L. (1976) “Reactions of Molecules Containing Hetero Atoms over Zeolites”, in J.R. Rabo (ed.), Zeolite Chemistry and Catalysis, ACS Monograph 171, Washington D.C., pp. 529–551.

    Google Scholar 

  4. Tagiev, D.B. and Minachev, Kh.M. (1981) “Catalytic Properties of Zeolites Towards Oxidation Reactions”, Russ. Chem. Rev. 50. 1009–1025.

    Article  Google Scholar 

  5. Isakov, Ya.I. and Minachev, Kh.M. (1982) “Latest Advances and Trends in the Development of Catalysis on Zeolites”, Russ. Chem. Rev. 51, 1188–1204.

    Article  Google Scholar 

  6. Maxwell, I.E. (1982), Adv. Catal. Related Subjects 31. 1–76.

    Article  CAS  Google Scholar 

  7. Hölderich, W.F. (1986) “New Horizons in Catalysis using Modified and Unmodified Pentasil Zeolites”. Pure Appl. Chem. 58. 1383–1388.

    Article  Google Scholar 

  8. Hölderich, W.F. (1986) “New Horizons in Catalysis using Modified and Unmodified Pentasil Zeolites”, in Y. Murakami, A. Iijima and J.W. Ward (eds.), New Developments Zeolite Science and Technology, Kodansha, Elsevier, Tokyo, pp. 827–834.

    Chapter  Google Scholar 

  9. Hölderich, W.F., Hesse, M. and Naumann, F. (1988) “Zeolites : Catalysts for Organic Syntheses”, Angev. Chem.Int. Ed. Engl. 27, 226–246.

    Article  Google Scholar 

  10. Van Bekkum, H. and Kouwenhoven, H.W. (1988) “Zeolites and Fine Chemicals”, in M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, C. Montassier and G. Pérot (eds.), Heterogeneous Catalysis and Fine Chemicals, Stud. Surf. Sci. Catal., Vol. 41, Elsevier, Amsterdam, pp. 45–59.

    Google Scholar 

  11. Hölderich, W.F. (1988) “New aspects in the performance of heterogeneous catalysts for intermediates and fine chemicals”, ibid, pp. 83–90.

    Chapter  Google Scholar 

  12. Hölderich, W.F. (1989) “The use of zeolite catalysts for the synthesis of nitrogen-containing organic intermediates”, in H.G. Karge and J. Weitkamp (eds.), Zeolites as Catalysts Sorbents and Detergent Builders, Stud. Surf. Sci. Catal., Vol. 46, Elsevier, Amsterdam, pp. 193–209.

    Google Scholar 

  13. Parton, R.M., Jacobs, J.M. Huybrechts, D.R. and Jacobs, P.A. (1989) “Shape-selective catalysis in zeolites with organic substrates containing oxygen”, ibid., pp. 163–192.

    Google Scholar 

  14. Hölderich, W.F. (1989) “Zeolites : Catalysts for the Synthesis of Organic Compounds”, in P.A. Jacobs and R.A. Van Santen (eds.), Zeolites : Facts, Figures, Future, Stud. Surf. Sci. Catal., Vol. 49, Elsevier, Amsterdam, pp. 69–93.

    Google Scholar 

  15. Pérot, G. and Guisnet, M. (1990) “Advantages and disadvantages of zeolites as catalysts in organic chemistry”, J. Mol. Catal. 61, 173–196.

    Article  Google Scholar 

  16. Höelderich, W.F. and Van Bekkum, H. (1991) “Zeolites in organic syntheses”, in H. Van Bekkum, E.M. Flanigen and J.C. Jansen (eds.), Introduction to Zeolite Science and Practice, Stud. Surf. Sci. Catal., Vol. 58, Elsevier, Amsterdam, pp. 631–726.

    Chapter  Google Scholar 

  17. Sherman, J.D. (1984) “Ion-exchange separations with molecular sieve zeolites”, in F. Ramôa Ribeiro, A.E. Rodrigues, L.D. Rollmann and C. Naccache (eds.), Zeolites Science and Technology, NATO ASI Series E N° 80, Martinus Nijhoff Publishers, The Hague, Boston, Lancaster, pp. 583–623.

    Google Scholar 

  18. Olah, J., Papp, J., Meszaros-Kis A., Mucsi, Gy. and Kallo, D. (1989) “Simultaneous separation of suspended solids, ammonium and phosphate ions from waste water by modified clinoptilolite”, in H.G. Karge and J. Weitkamp, Zeolites as Catalysts, Sorbents and Detergent Builders, Stud. Surf. Sci. Catal., Vol. 46, Elsevier, Amsterdam, pp. 711–719.

    Chapter  Google Scholar 

  19. Townsend, R.P. (1991) “Ion-exchange in zeolites”, in Van Bekkum, E.M. Flanigen and J.C. Jansen (eds.), Introduction to Zeolite Science and Practice, Stud. Surf. Sci. Catal., Vol. 58, Elsevier, Amsterdam, pp. 359–390.

    Chapter  Google Scholar 

  20. Sherman, J.D. (1992) “Environmental Applications of Molecular Sieves”, 9th International Zeolite Conference, Montreal, paper n° PL 5.

    Google Scholar 

  21. Kallo, D. and Papp, J. (1992) “Effect of zeolites in waste water purification”, ibid., paper n° RP 18.

    Google Scholar 

  22. Shumacher, R. and Weitkamp, J. (1992) “Separation of gaseous tetrachloroethane/water mixtures by adsorption on zeolites”, ibid., paper B17.

    Google Scholar 

  23. Nikashina, V.A., Senyavin, M.M., Mironova, L.I. and Tyurina, V.A. (1986) “Modelling and Calculating Ion-Exchange Processes of Metal Sorption by Natural Clinoptilolite”, in Y. Murakami, A. Iijima and J.W. Ward (eds.), New Developments in Zeolite Science and Technology, Kodansha, Elsevier, Tokyo, pp. 283–288.

    Chapter  Google Scholar 

  24. Olguin, M.T., Solache-Rios, M., Asomoza, M., Bosch, P. and Bulbulian, S. (1992) “Uranium exchange in Y-Zeolite and natural erionite”, 9th International Zeolite Conference, Montreal, paper RP 19.

    Google Scholar 

  25. Pansini, M., Colella, C., de Gennaro, M. and Langella, A. (1992) “Natural zeolites in environmental preservation : an innovatrice strategy for chromium removal”, ibid., paper n° FP 36.

    Google Scholar 

  26. Llenado, R.A. (1984) “The use of sodium type A zeolite in Laundry detergents”, in D. Olson and A. Bisio (eds.), Proceedings of the Sixth International Zeolite Conference, Butterworths, pp. 940–956.

    Google Scholar 

  27. Maxwell, J.E. and Stork, W.H.J. (1991) “Hydrocarbon processing with zeolites”, in H. Van Bekkum, E.M. Flanigen and J.C. Jansen (eds.), Introduction to Zeolite Science and Practice, Stud. Surf. Sci. Catal., Vol. 58, Elsevier, Amsterdam, pp. 571–628.

    Chapter  Google Scholar 

  28. Smith, K. (1991) “Solids for catalysis and control in organic synthesis”, in M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, G. Pérot, R. Maurel and C. Montassier (eds.), Heterogeneous Catalysis and Fine Chemicals II, Stud. Surf. Sci. Catal., Vol. 59, pp. 55–71.

    Chapter  Google Scholar 

  29. Chen, N.Y., Garwood, W.E., Dwyer, F.G. (1989) “Shape-selective catalysis in industrial applications”, Chemical Industries 36, Marcel Dekker, Inc. in New-York and Basel.

    Google Scholar 

  30. Albright, L.F. (1990) “H2SO4, HF processes compared and new technologies revealed”, Oil and Gas Journal 26, 70–77.

    Google Scholar 

  31. Iwamoto, M. (1990) “Catalytic decomposition of nitrogen monoxide”, in “Future opportunities in catalytic and separation technology”, M. Misono, Y. Moro-Oka and S. Kimura (eds.), Stud. Surf. Sci. Catal. Vol. 54, Elsevier, Amsterdam, pp. 121–143.

    Google Scholar 

  32. Weissermel,K. and Arpe, H.J. (1978), Industrial Organic Chemistry, Verlag Chemie, Weinheim.

    Google Scholar 

  33. Frank, H. and Stadelhofer, J.W. (1988) Industrial Aromatic Chemistry, Springer Verlag,Berlin.

    Book  Google Scholar 

  34. Gubelmann, M.H., Doussain, C., Tirel, P.J. and Popa, J.M. (1991) “Nitric acid associated with inorganic solids : a versatile reagent and catalyst in the chemistry of aromatics”, in M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, G. Pérot, R. Maurel and C. Montassier (eds.), Heterogeneous Catalysis and Fine Chemicals II, Stud. Surf. Sci. Catal., Vol. 59, Elsevier, Amsterdam, pp. 471–478.

    Chapter  Google Scholar 

  35. Gubelmann, M.H. (1992) “Aspects industriels de la nitration aromatique”, Division Catalyse, Société Française de Chimie, L’Actualité Chimique, fiche n° 32.

    Google Scholar 

  36. Ono, Y., Tohmori, K. Suzuki, S., Nakashiro, K. and Suzuki, E. (1988) “Functionalization of benzene by its reaction with nitrogen oxides over solid acid catalysts”, in M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, C. Montassier and G. Pérot (eds.), Heterogeneous Catalysis and Fine Chemicals, Stud. Surf. Sci. Catal., Vol. 41, Elsevier, Amsterdam, pp. 75–82.

    Chapter  Google Scholar 

  37. Salakhytdinov, N.F. and Ione, K.G. (1992) “Gas-phase nitration of aromatics on zeolites of different acidity”, 9th International Zeolite Conference, Montreal, paper N° RP 75.

    Google Scholar 

  38. Bertea, L.E., Kouwenhoven, H.W. and Prins, R. “Catalytic vapor-phase nitration of benzene over Y-zeolites. Influence of catalyst treatment”, in M. Guisnet, J. Barbier, J. Barrault, C. Bouchoule, D. Duprez, C. Montassier and G. Pérot (eds.), Heterogeneous Catalysis and Fine Chemicals III, to be published.

    Google Scholar 

  39. Huizinga, T., Scholten, J.J.F., Wortel, Th.M. and Van Bekkum, H. (1980) “Zeolite ZSM5 and related materials as catalyst in benzene chlorination”, Tetrahedron Letters, 3809–3812.

    Google Scholar 

  40. Wortel, Th.M., Oudijn, D., Vleugel, C.J., Roelofsen, D.P. and Van Bekkum, H. (1979) “Selective bromination of halobenzenes using zeolite catalysts”, J. Catal. 60, 110–120 and references therein.

    Article  CAS  Google Scholar 

  41. Miyake, T. Sekizawa, K., Hironaka, T., Nakano, M., Fujii, S. and Tsutsumi, Y. (1986) “Para-selective Chlorination of Chlorobenzene on Modified Y-type Zeolites”, in Y. Murakami, A. Iijima and J.W. Ward (eds.), New Developments in Zeolite Science and Technology, Kodansha/Elsevier, Tokyo, pp. 747–754.

    Chapter  Google Scholar 

  42. Coq, B., Pardillos, J. and Figueras, F. (1990) “Isomerization of o-Dichlorobenzene over zeolites. Effect of the Zeolite Structure”, Appl. Catal. 62, 281–294.

    Article  CAS  Google Scholar 

  43. Chiche, B., Finiels, A., Gauthier, C., Geneste, P., Graille, J. and Pioch, D. (1986) “Friedel-Crafts Acylation of Toluene and p-Xylene with carboxylic acids catalyzed by Zeolites”, J. Org. Chem. 51, 2128–2130.

    Article  CAS  Google Scholar 

  44. Gauthier, C., Chiche, B., Finiels, A. and Geneste, P. (1989) “Influence of acidity in Friedel-Crafts acylation catalyzed by zeolites”, J. Molecular Catal. 50, 219–29.

    Article  CAS  Google Scholar 

  45. Nicolau, I. and Aguilo, A. (1987) U.S. Pat. 4.652.683, Celanese.

    Google Scholar 

  46. Gupta, B.B.G. (1987) U.S. Pat. 4.668.826, Celanese.

    Google Scholar 

  47. Corma, A. Climent, M.J., Garcia, H. and Primo, K. (1989) “Acylation of Anisole by Acyl Chlorides as Carboxylic Acids Over Acid Zeolites”, Appl. Catal. 49, 109–123.

    Article  CAS  Google Scholar 

  48. Hölderich, W.F., Lermer, H. and Scharzmann, M. (1987) DOS 3.618.964, BASF.

    Google Scholar 

  49. Pouilloux, Y., Gnep, N.S., Magnoux, P. and Pérot, G. (1987) “Zeolite-catalyzed. Rearrangement of PhenylAcetate”, J. Mol. Catal. 40, 231–233.

    Article  CAS  Google Scholar 

  50. Pouilloux, Y., Bodibo, J.P., Neves, I., Gubelmann, M., Pérot, G. and Guisnet, M. (1991) “Mechanism of phenylacetate transformation on zeolites”, in M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, G. Pérot, R. Maurel and C. Montassier (eds.), Heterogeneous Catalysis and Fine Chemicals II, Stud. Surf. Sci. Catal., Vol. 59, Elsevier, Amsterdam, pp. 513–522.

    Chapter  Google Scholar 

  51. Neves, I., Ramôa Ribeiro, F., Bodibo, J.-P., Pouilloux, Y., Gubelmann, M., Magnoux, P., Guisnet, M. and Pérot, G. (1992) “Acylation of phenol and transformation of phenylacetate over zeolites”, 9th International Zeolite Conference, Montreal, paper FP 10.

    Google Scholar 

  52. Cundy, C.S., Higgins, R., Kibby,S.A.M., Lowe, B.M. and Paton, R.M. (1989) “Para-selective Fries rearrangement of phenylacetate in the presence of zeolite molecular sieves”, Tetrahedron Lett. 30, 2281–2284.

    Article  CAS  Google Scholar 

  53. Harvey, G., Vogt, A., Kouwenhoven, H.W. and Prins, R. (1992) “Performance of zeolite beta in Friedel-Crafts reactions of functionalized aromatics”, 9th International Zeolite Conference, Montreal, paper B3.

    Google Scholar 

  54. Hoefnagel,A.J. and Van Bekkum, H. “Direct Fries Reaction of Resorcinol with Benzoic Acids catalyzed by zeolite H-beta”, Appl. Catal. submitted.

    Google Scholar 

  55. Sheldon, R.A. (1991) “Heterogeneous Catalytic Oxidation and Fine Chemicals”, in M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, G. Pérot, R. Maurel and C. Montassier (eds.), Heterogeneous Catalysis and Fine Chemicals II, stud. Surf. Sci. Catal., Vol. 59, Elsevier, Amsterdam, pp. 33–54.

    Chapter  Google Scholar 

  56. Sheldon, R.A. (1990) “Catalytic oxidation in the manufacture of Fine Chemicals”, in G. Centi and F. Trifiro (eds.), New Developments in Selective oxidation, Stud.Surf. Sci. Catal., Vol. 55, Elsevier, Amsterdam, pp. 1–30.

    Chapter  Google Scholar 

  57. Cavani, F. and Trifiro, F. (1992) “Some innovative aspects in the production of monomers via catalyzed oxidation processes”. Appl. Catal. A: General 88, 115–135.

    Article  CAS  Google Scholar 

  58. Notari, B. (1988) “Synthesis and catalytic properties of titanium containing zeolites”, in P.J. Grobet, W.J. Mortier, E.F. Vansant and G. Schulz-Ekloff (eds.), Innovation in Zeolite Materials Science, Stud. Surf. Sci. Catal., Vol. 37, Elsevier, Amsterdam, pp. 413–425.

    Chapter  Google Scholar 

  59. Roffia, P., Leofanti, G., Cesana, A., Mantegazza, M., Padovan, M., Petrini, G., Tonti, S., Gervasatti, P. (1990) “Cyclohexanone ammoximation: a break through in the caprolactam production process”, in G. Centi and F. Trifiro (eds.), New Developments in Selective Oxidation, Stud. Surf. Sci. Catal., Vol. 55, Elsevier, Amsterdam, pp. 43–52.

    Chapter  Google Scholar 

  60. Tonti, S., Roffia, P., Cesana, A., Mantegazza, M.A. and Padovan, M. (1989) , Eur. Pat. 314.147, Montedipe SpA.

    Google Scholar 

  61. Romano, U., Esposito, A., Maspero, F. Neri, C. and Clerici, M.G. (1990) “Selective oxidation with Ti-silicalite”, in G. Genti and F. Trifiro (eds.), New Developments in Selective Oxidation, Stud. Surf. Sci. Catal., Vol. 55, Elsevier, Amsterdam, pp. 33–41.

    Chapter  Google Scholar 

  62. Tatsumi, T., Nakamura, M., Negishi, S. and Tominaga, H.O. (1990) “Shape selective oxidation of alkanes with H2O2 catalyzed by titanosilicate”, J. Chem. Soc Chem. Commun., 476–477.

    Google Scholar 

  63. Huybrechts, D.R.C., De Bruycker, L. and Jacobs, P.A. (1990) “Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite”, Nature, 345, 240–241.

    Article  CAS  Google Scholar 

  64. Clerici, M.G. (1991) “Oxidation of saturated hydrocarbons with hydrogen peroxide, catalyzed by titanium silicalite”, Appl. Catal. 68, 249–261.

    Article  CAS  Google Scholar 

  65. Neri, C. and Buonomo, F. (1982), Eur. Pat. Appl., 100, 117, Enichem.

    Google Scholar 

  66. Thangaraj, A., Sivasanker, S. and Ratnasamy, P. (1992) “Catalytic properties of titanium silicalites. IV Vapour phase Beckmann rearrangement of cyclohexanone oxime”, J. Catal. 137, 252–256.

    Article  CAS  Google Scholar 

  67. Bellussi, G. and Fattore, V. (1991) “Isomorphous substitution in zeolites: A route for the preparation of novel catalysts”, in P.A. Jacobs, N.I. Jaeger, L. Kubelková and B. Wichterlová (eds.), Zeolite Chemistry and Catalysis, Stud. Surf. Sci. Catal., Vol. 69, Elsevier, Amsterdam, pp. 79–92.

    Chapter  Google Scholar 

  68. Kraushaar, B. and Van Hoof, J.H.C. (1988) “A new method for the preparation of titanium silicalite (TS-1)”, Catalysis Letters 1, 81–84.

    Article  CAS  Google Scholar 

  69. Thangaraj, A., Kumar, R., Mirajkan, S.P. and Ratnasamy, P. (1991) “Catalytic properties of crystalline titanium silicalites. I. Synthesis and characterization of titanium-rich zeolites with MFI structure”, J. Catal. 130, 1–8.

    Article  CAS  Google Scholar 

  70. Bellussi, G., Carati, A., Clerici, M.G., Maddinelli, G. and Millini, R. (1992) “Reactions of titanium silicalite with protic molecules and hydrogen peroxides”, I Catal. 133, 220–230.

    Article  CAS  Google Scholar 

  71. Landis, P.S. and Venuto, P.B. (1966) “Organic Reactions Catalyzed by Crystalline Aluminosilicates. IV. Beckmann Rearrangement of Ketoximes to Amides”. J. Catal. 6 ,245–252.

    Article  CAS  Google Scholar 

  72. Aucejo, A., Burguet, M.C., Corma, A. and Fornes, V. (1986) “Beckmann rearrangement of cyclohexanone oxime on HNaY zeolites: kinetic and spectroscopic studies”, Appl. Catal. 22, 187–200.

    Article  CAS  Google Scholar 

  73. Corma, A., Garcia, H., Primo, J. and Sastre, E. (1991) “Beckmann rearrangement of cyclohexanone oxime on zeolites”, Zeolites 11, 593–597.

    Article  CAS  Google Scholar 

  74. Sato, H., Ishii, N., Hirose, K. and Nakamura, S. (1986) “Some Catalytic Applications of ZSM5 Zeolite: Para-Selective Dealkylation and Vapor Phase Beckmann Rearrangement”, in Y. Murakami, A. Iijima and J.W. Ward (eds.), New Developments in Zeolite Science and Technology, Kodansha/Elsevier, Tokyo, pp. 755–762.

    Chapter  Google Scholar 

  75. Sato, H., Hirose, K., Kitamura, M. and Nakamura, Y. (1989) “A vapor phase Beckmann rearrangement over high-silicious ZSM-5”, in P.A. Jacobs and R.A. Van Santen (eds.), Zeolites: Facts, Figures, Future, Stud. Surf. Sci. Catal., Vol. 49, Elsevier, Amsterdam, pp. 1213–1222.

    Chapter  Google Scholar 

  76. Olson, K.D. (1988), Eur. Pat. 251.168, UCC.

    Google Scholar 

  77. Takahashi, T., Kai, T. and Nishi, M. (1992) “Beckmann rearrangement of cyclohexanone oxime over high silica HZSM5 zeolites modified with boria”, 9th International Zeolite Conference ,Montreal, paper n° FP 6.

    Google Scholar 

  78. Pews, R.G. and Gall, J.A. (1990) “Aromatic fluorine chemistry. Part 3. Preparation of fluorophenols via hydrolysis of chlorofluorobenzenes”, J. Fluorine Chem. 50, 377–380.

    Article  CAS  Google Scholar 

  79. Jacobson, S.E. (1992) “New Route to m-Aminophenol”, 14th Conference on Catalysis of Organic Reactions, Albuquerque, paper n° 2.

    Google Scholar 

  80. Figoli, N.S., Keselman,H.R., L’Argentière, P.C. and Lazzaroni, C.L. (1982) “hydrolysis of chlorobenzene over Cu-Promoted Hydroxyapatites”, J. Catal. 77, 64–73.

    Article  CAS  Google Scholar 

  81. Figoli, N.S., Keselman,H.R., L’Argentière, P.C. and Lazzaroni, C.L. (1984) “Reactivation of Cu-Promoted Hydroxyapatites during chlorobenzene Hydrolysis”. J. Catal. 77. 64–73.

    Article  Google Scholar 

  82. Asahi Chemical Ind. (1986), Japanese Patents, 2240-634, 2240-635, 2240-636.

    Google Scholar 

  83. Asahi Chemical Ind. (1987), Japanese Patent, 192–30.

    Google Scholar 

  84. Idemitsu Petrochemical (1987), Japanese Patent, 281–834.

    Google Scholar 

  85. Keitshitsu Ryubun (1988), Japanese Patent, 319–448.

    Google Scholar 

  86. Pérot, G., Pouilloux, Y., Guisnet, M. and Gubelmann, M. (1992) “Production of Phenols from haloaromatics in the presence of copper-zeolites: synthesis of the catalyst and mechanistic study”, 14th Conference on Catalysis of Organic Reactions, Albuquerque, paper n° 22.

    Google Scholar 

  87. Gubelmann, M.H., Guisnet, M., Pérot, G. and Pouilloux, Y. (1992) “Synthesis of copper containing zeolites: New, simple and efficient method for quantitative exchange”, Collect. Czech. Chem. Commun. 57, 809–816.

    Article  CAS  Google Scholar 

  88. Kucherov, A.V., Slinkin, A.A., Kondrat’ev, D.A., Bondarenko, T.N., Rubinstein, A.M. and Minachev, M.Kh. (1985) “Cu2+-cation location and reactivity in mordenite and ZSM5: e.s.r. -study”, Zeolites 5. 320–324.

    Article  CAS  Google Scholar 

  89. Maxwell, I.E. and Drent, E. (1976) “A Kinetic Study of the Reduction of divalent Copper-Exchanged Faujasite with Butadiene and Ammonia”, J. Catal. 41, 412–419.

    Article  CAS  Google Scholar 

  90. Van der Gaag, F.J., Louter, F., Oudejans, J.C. and Van Bekkum, H. (1986) “Reactions of ethanol and ammonia to pyridines over zeolite ZSM5”, Appl. Catal. 26, 191–201.

    Article  Google Scholar 

  91. Guisnet, M., Alvarez, F. Giannetto, G. and Pérot, G. (1987) “Hydroisomerization and hydrocracking of n-heptane on PtH zeolites. Effect of the porosity and of the distribution of metallic and acid sites”, Catalysis Today 1, 415–433.

    Article  CAS  Google Scholar 

  92. Melo, L. Chevalier, F., Magnoux, P. and Guisnet, M. (1992) “Estudio Cinetico de la condensacion de la acetona en 4-metil-2-pentanona sobre Pt/HZSM5”, Actas III Simposio Ibero Americano de Catalisis, Madrid, pp. 775–778.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Perot, G., Guisnet, M. (1993). Zeolites in Fine Chemical Synthesis - Contribution to Environmental Protection. In: Weijnen, M.P.C., Drinkenburg, A.A.H. (eds) Precision Process Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1759-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1759-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4772-2

  • Online ISBN: 978-94-011-1759-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics