Skip to main content

Abstract

So far the most effective arm of the immune response against both virus- and non-virus-induced tumours is T-cell immunity (reviewed in [1–4]). The principles of T-cell immunity against virus-induced tumours are the same as those against viruses in general. Small immunogenic peptides, processed from viral proteins are presented, bound to MHC class I or class II molecules at the surface of tumour cells or associated antigen presenting cells to CD8 cytotoxic T (Tc) cells or CD4+ T helper (TH) cells, respectively. Recent studies indicate that non-virus-induced tumours of experimental animals and human beings can also evoke T-cell responses against non-mutated gene products. These responses [5,6] may have similar protective or therapeutic potential as the T cell responses against virus-induced tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenberg PD, Klarnet JP, Kern DE, Cheever MA. Therapy of disseminated tumours by adoptive transfer of specifically immune T cells. Prog Exp Tumour Res 1988; 32: 104–27.

    CAS  Google Scholar 

  2. North RJ, Awwad M, Dunn PC. T cell mediated tumour regression in experimental systems. In: F Melchers, editor. Progression Immunology. 1989; 7: 1097–163.

    Chapter  Google Scholar 

  3. Melief CJM. Tumour eradication by adoptive transfer of cytotoxic T lymphocytes. Adv Cancer Res 1992; 58: 143–75.

    Article  PubMed  CAS  Google Scholar 

  4. Melief CJM, Kast WM. Lessons from T cell responses to virus induced tumours for cancer eradication in general. Cancer Surv 1992; 13: 81–99.

    PubMed  CAS  Google Scholar 

  5. Van den Eynde B, Lethé B, van Pel A, et al. The gene coding for a major tumour rejection antigen of tumour p815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 1991; 173: 1373–84.

    Article  PubMed  Google Scholar 

  6. Van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytotoxic T lymphocytes on a human melanoma. Science 1991; 254: 1643–7.

    Article  PubMed  Google Scholar 

  7. Melief CJM, Kast WM. Cytotoxic T lymphocyte therapy of cancer and tumour escape mechanisms. Seminars in Cancer Biology 1991; Vol. II: 347–54.

    Google Scholar 

  8. Deverson EV, Gow IR, Coadwell WJ, et al. MHC Class II region encoding proteins related to the multidrug resistance family of transmembrane transporters. Nature 1990; 348: 738–41.

    Article  PubMed  CAS  Google Scholar 

  9. Trowsdale J, Hanson I, Mockridge I, et al. Sequences encoded in the class II region of the MHC related to the ’ABC superfamily of transporters. Nature 1990; 348: 738–41.

    Article  Google Scholar 

  10. Spies T, Breslauer M, Bahrain S, et al. A gene in the human major histocompatibility class II region controlling the class I presentation pathway. Nature 1990; 348: 744–7.

    Article  PubMed  CAS  Google Scholar 

  11. Monaco JJ, Cho S, Attaya M. Transport protein genes in the murine MHC: possible implications for antigen processing. Science 1990; 250: 1723–6.

    Article  PubMed  CAS  Google Scholar 

  12. Brown MG, Driscoll J, Monaco JJ. Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 1991; 353: 355–7.

    Article  PubMed  CAS  Google Scholar 

  13. Glynne R, Powis SH, Beck S, et al. A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 1991; 353: 357–60.

    Article  PubMed  CAS  Google Scholar 

  14. Roche PA, Cresswell P. Invariant chain association with HLÁ DR molecules inhibits immunogeneic peptide binding. Nature 1990; 345: 615–7.

    Article  PubMed  CAS  Google Scholar 

  15. Teyton L, O’Sullivan D, Dickson PW, et al. Invariant chain distinguishes between the exogeneous and endogeneous antigen presentation pathways. Nature 1990; 348: 39–44.

    Article  PubMed  CAS  Google Scholar 

  16. Bakke O, Dobberstein B. MHC Class II associated invariant chain contains a sorting signal for endosomal compartments. Cell 1990; 63: 707–16.

    Article  PubMed  CAS  Google Scholar 

  17. Van Bleek G, Nathenson SG. Isolation of an endogeneously processed immunodominant viral peptide from the class I H-2 Kb molecule. Nature 1990; 348: 213–6.

    Article  PubMed  Google Scholar 

  18. Rötschke O, Falk F, Deres K, et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990; 348: 252–4.

    Article  Google Scholar 

  19. Schumacher TNM, de Bruijn MLH, Vernie LN, et al. Peptide selection by MHC class I molecules. Nature 1991; 350: 703–6.

    Article  PubMed  CAS  Google Scholar 

  20. Falk K, Rötschke O, Stevanovic S, et al. Allele specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351: 290–6.

    Article  PubMed  CAS  Google Scholar 

  21. Rudensky AY, Preston-Hurlburt P, Hong SC, et al. Sequence analysis of peptides bound to MHC class II molecules. Nature 1991; 353: 622–7.

    Article  PubMed  CAS  Google Scholar 

  22. Madden DR, Gorga JC, Strominger JL, Wiley DC. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 1991; 353: 321–5.

    Article  PubMed  CAS  Google Scholar 

  23. Pamer EG, Harly JT, Bevan MJ. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 1991; 353: 852–5.

    Article  PubMed  CAS  Google Scholar 

  24. Plata F, Langlade-Demoyen P, Abastado JP, et al. Retrovirus antigens recognized by cytotoxic T lymphocytes activate tumour rejection in vivo. Cell 1987; 48: 231–40.

    Article  PubMed  CAS  Google Scholar 

  25. Klarnet JP, Kern DE, Okuno K, et al. FBL-reactive CD8 + cytotoxic and CD4 + helper T lymphocytes recognize distinct Friend murine leukemic virus-encoded antigens. J Exp Med 1989; 169: 457–67.

    Article  PubMed  CAS  Google Scholar 

  26. Ke-San Ruan, Lilly F. Identification of an epitope encoded in the env gene of Friend murine leukemia virus, recognized by anti-Friend virus cytotoxic T lymphocytes. Virology 1991; 181: 91–100.

    Article  Google Scholar 

  27. Kast WM, Offringa R, Peters PJ, et al. Eradication of Adenovirus El induced tumours by E1A specific cytotoxic T lymphocytes. Cell 1989; 59: 603–14.

    Article  PubMed  CAS  Google Scholar 

  28. Kast WM, Melief CJM. Fine specificity of cytotoxic T lymphocytes directed against Adenovirus-induced tumours and peptide-MHC binding. Int J Cancer 1991(Suppl)6: 90–4.

    Article  CAS  Google Scholar 

  29. Ioannides CG, Platsoncas CD, Rasked S, et al. Tumour cytolosis by lymphocytes infiltrating ovarian malignant ascites. Cancer Res 1991; 51: 4257–65.

    PubMed  CAS  Google Scholar 

  30. Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumour infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma: a preliminary report. New Engl J Med 1988; 319: 1676–80.

    Article  PubMed  CAS  Google Scholar 

  31. Fisher B, Packard BS, Read EJ, et al. Tumour localisation of adoptively transferred indium-111 labeled tumour infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 1989; 7: 250–61.

    PubMed  CAS  Google Scholar 

  32. Kradin RL, Kurnick JT, Lazarus DS, et al. Tumour infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet 1989; 1: 577–80.

    Article  PubMed  CAS  Google Scholar 

  33. Schulz M, Zinkernagel RH, Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci USA 1991; 88: 991–3.

    Article  PubMed  CAS  Google Scholar 

  34. Kast WM, Roux L, Curran J, et al. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci USA 1991; 88: 2283–7.

    Article  PubMed  CAS  Google Scholar 

  35. Gao X-M, Zheng B, Liew FY, et al. Priming of influenza virus-specific cytotoxic T lymphocytes in vivo by short synthetic peptides. J Immunol 1991; 147: 3268–73.

    PubMed  CAS  Google Scholar 

  36. Reinkoldsson-Ljunggren G, Ramqvist T, Ärklund-Richter L, Dalianis T. Immunization against polyoma tumours with synthetic peptides derived from the sequences of middle -and large -T antigens. Int J Cancer 1992; 50: 142–6.

    Article  Google Scholar 

  37. Fayolle C, Deriand E, Leclerc C. In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help. J Immunol 1991; 147: 4069–73.

    PubMed  CAS  Google Scholar 

  38. De Bruijn MHL, Schumacher TNM, Nieland JD, et al. Peptide loading of empty major histocompatibility complex molecules on RMA-S cells allows induction of primary cytotoxic T lymphocyte responses. Eur J Immunol 1991; 21: 2963–70.

    Article  PubMed  Google Scholar 

  39. De Bruijn MLH, Nieland JD, Schumacher TNM, et al. Mechanisms of induction of primary virus-specific cytotoxic T lymphocyte responses. Eur J Immunol. In Press.

    Google Scholar 

  40. Inaba K, Young JW, Steinman ERM. Direct activation of CD8 + cytotoxic T lymphocytes by dendritic cells. J Exp Med 1987; 166: 182–94.

    Article  PubMed  CAS  Google Scholar 

  41. Boog CJP, Boes J, Melief CJM. Stimulation with dendritic cells decreases or obviates the CD4 + helper cell requirement in cytotoxic T lymphocyte responses. Eur J Immunol 1988; 18: 219–23.

    Article  PubMed  CAS  Google Scholar 

  42. Murray RJ, Kurilla MG, Brooks JM, et al. Identification of target antigens for the human cytotoxic T lymphocyte response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 1992; 176: 157–68.

    Article  PubMed  CAS  Google Scholar 

  43. Jung S, Schluesener HJ. Human T lymphocytes recognize a peptide of single point-mutated oncogenic ras proteins. J Exp Med 1991; 173: 273–6.

    Article  PubMed  CAS  Google Scholar 

  44. Zur Hausen H. Viruses in human cancers. Science 1991; 243: 1167–73.

    Article  Google Scholar 

  45. Weinberg RA. Tumor suppressor genes. Science 1991; 243: 1138–46.

    Article  Google Scholar 

  46. Momand J, Zambetti GP, Olson DC, et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–45.

    Article  PubMed  CAS  Google Scholar 

  47. Oliner JD, Kinzler KW, Meltzer PS, et al. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 80–3.

    Article  PubMed  CAS  Google Scholar 

  48. Lane DP. p53, guardian of the genome. Nature 1992; 358: 15–6.

    Article  PubMed  CAS  Google Scholar 

  49. Kast WM, Brandt RMP, Melief CJM. Strict peptide length is not required for the indultion of cytotoxic T lymphocyte-mediated antiviral protection by peptide vaccination. Eur J Immunol 23: 1189–1192.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Melief, C.J.M., Kast, W.M. (1993). Interleukin-2 and tumour eradication by cytotoxic T lymphocytes. In: Wagstaff, J. (eds) The role of interleukin-2 in the treatment of cancer patients. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1753-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1753-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4769-2

  • Online ISBN: 978-94-011-1753-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics