Skip to main content

The population-dynamic functions of seed dispersal

  • Chapter

Part of the book series: Advances in vegetation science ((AIVS,volume 15))

Abstract

We summarize some of the population-dynamic consequences of the mosaic structure of plant populations for the evolution of seed dispersal. A fairly elaborated set of theoretical ideas exist regarding the evolution of dispersal and we have synthesized some of them in an attempt to make them more accessible to field ecologists. We consider the relationship of these general theoretical ideas to our understanding of fruit and seed dispersal.

We develop three related models to describe the similarities and differences in how dispersal functions for risk reduction(bet hedging), escaping the negative consequences of crowding, and escaping high concentrations of relatives. We also briefly discuss directed dispersal as a fourth population-dynamic aspect of dispersal. Dispersal can have a risk-reducing function only when there is global (metapopulation) temporal variance. Dispersal to escape the negative consequences of crowding requires only spatial and local temporal environmental variation. Dispersal for escaping high concentrations of relatives requires no environmental variation, but does require genetic population structure. Directed dispersal, defined as non-random into particular patch types contingent in the expectation of local success, is always valuable when possible and represents and advantage independent the others which can occur with random dispersal.

In an effort to accomodate for the differences between simple mathematical models and the behavior of complex natural fruit and seed dispersal systems we have discussed the following issues: actual patterns of patch structure and dispersal structures; and the impact of the detailed nature of density dependence, breeding systems, and genetic structure. We briefly compare the population-dynamic functions of dispersal presented here with the widely cited functions of colonization, escape and directed dispersal. Finally, we suggest how the theoretical models can be used with field data to estimate the fitness consequences of dispersal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Buylla, E. R. & García-Barrios, R. 1991. Seed and forest dynamics: a theoretical framework and an example from the Neotropics. Am. Nat. 137: 133–154.

    Article  Google Scholar 

  • Antonovic, J. & Primack, R. 1982. Experimental ecological genetics in Plantago: VI. The demography of seedling transplants of P. lanceolata. J. Ecol; 70: 55–75.

    Article  Google Scholar 

  • Baker, H. G. & Stebbins, G. L. 1965. Genetics of colonizing species. Academic Press, New York.

    Google Scholar 

  • Bertin, R. I. 1988. Paternity in plants. In: J. Lovett Doust & L. Lovett Doust, (eds.) Plant reproductive ecology: patterns and strategies, pp. 30–59. Oxford University Press, Oxford.

    Google Scholar 

  • Bergelson, J. 1990. Life after death: site pre-emption by the remains of Poa annua. Ecology 71: 2157–2165.

    Article  Google Scholar 

  • Charnov, E. L. 1982. The theory of sex allocation. Monographs in population biology 18, Princeton University Press, Princeton.

    Google Scholar 

  • Chesson, P. L. & Huntly, N. 1988. Community consequences of life-history traits in a variable environment. Ann. Zool. Fennici 25: 5–16.

    Google Scholar 

  • Clements, F. E. & Goldsmith, G. W. 1924. The phytometer method in Ecology. Carnegie Institute of Washington Publication No. 356.

    Google Scholar 

  • Cohen, D. & Levin, S. A. 1985. The interaction between dispersal and dormancy strategies in varying and heterogeneous environments. In: E. Teromato & M. Yomaguti,(eds.) Mathematical topics in population biology, morphogenesis,and neuroscience. pp. 110–122. Proceed. Internat. Symp. Kyoto, 1985.

    Google Scholar 

  • Cohen, D. & Levin, S. A. 1991. Dispersal in patchy environments:the effects of temporal and spatial structure. Theor. Pop. Biol. 39: 63–99.

    Article  Google Scholar 

  • Cohen, D. & Motro, U. 1989. More on optimal rates of dispersal: taking into account the cost of the dispersal mechanism. Am. Nat. 134: 659–663.

    Article  Google Scholar 

  • Comins, H. N. 1982. Evolutionarily stable strategies for localized dispersal in two dimensions. J. Theor. Biol. 94: 579–606.

    Article  PubMed  CAS  Google Scholar 

  • Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: P. J. Den Boer, G. Gradwell, (eds.) Dynamics of Populations. pp. 298–312. PUDOC, Wageningen.

    Google Scholar 

  • Docters van Leeuwen, W. M. 1954. On the biology of some Loranthaceae and the role birds play in their life-history. Beaufortia 4: 105–208.

    Google Scholar 

  • Elmer, S. & Shmida, A. 1981. Why are adaptations for longrange seed dispersal rare in desert plants? Oecologia (Berl.) 51: 133–144.

    Article  Google Scholar 

  • Estrada, A. & Fleming, T. H. 1986. Frugivores and seed dispersal.Dr W. Junk Publishers, Dordrecht.

    Book  Google Scholar 

  • Frank, S. A. 1986. Dispersal polymorphisms in subdivided populations. J. Theor. Biol. 122: 303–309.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, W. D. 1972. Altruism and related phenomena, mainly in social insects. Ann. Rev. Ecol. Syst. 3: 193–232.

    Article  Google Scholar 

  • Hamilton, W. D. & May, R. M. 1977. Dispersal in stable habitats. Nature 269: 578–581.

    Article  Google Scholar 

  • Handel, S. N. 1978. The competitive relationship of three woodland sedges and its bearing on the evolution of antdispersal of Carex pedunculata. Evolution 32: 151–163.

    Article  Google Scholar 

  • Hanzawa, F. M., Beattie, A. J. & Culver, D. C. 1988. Directed dispersal: demographic analysis of an ant-seed mutualism.Am. Nat. 131: 1–13.

    Article  Google Scholar 

  • Harper, J. L. 1961. Approaches to the study of plant competition.In: F. L. Milthorpe, (ed.), Mechanisms in biological competition. Symp. Soc. exp. Biol. 15: 1–39.

    Google Scholar 

  • Harper, J. L. 1972. The population biology of plants. Academic Press, London.

    Google Scholar 

  • Howe, H. F. & Smallwood, J. 1982. Ecology of seed dispersal.Ann. Rev. Ecol. Sys. 13: 201–228.

    Article  Google Scholar 

  • Horvitz, C. C. & Schemske, D. W. 1986. Seed dispersal and environmental heterogeneity in a neotropical herb: a model of population and patch dynamics. In: A. Estrada & T. H. Fleming, (eds.) Frugivores and seed dispersal. Dr W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104: 501–528.

    Article  Google Scholar 

  • Johnson, M. & Gaines, M. S. 1990. Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Ann. Rev. Ecol. Syst. 21: 449–480.

    Article  Google Scholar 

  • Kira, T., Ogawa, H. & Shinozaki, K. 1953. Intraspecific competition among higher plants. 1. Competition-density-yield inter-relationships in regularly dispersed populations. J. Inst. Polytech. Osaka Cy. Univ. D. 4: 1–16.

    Google Scholar 

  • Krummel, J. R, Gardner, R. H, Sugihara, G. & O’Neill, R. V. 1987. Landscape patterns, in a disturbed environment. Oikos 48: 321–324.

    Article  Google Scholar 

  • Levin, D. A. & Kerster, H. W. 1974. Gene flow in seed plants. Evol. Biol. 7: 139–220.

    Article  Google Scholar 

  • Levin, S. A., Cohen, D. & Hastings, A. 1984. Dispersal strategies in patchy environments. Theor. Popul. Biol. 26: 165– 191.

    Article  Google Scholar 

  • Levins, R. 1970. Extinction. Some mathematical questions in biology. In: M. Gerstenhaber, (ed.) Lectures on mathematics in the life sciences, pp. 77–107. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Lloyd, D. G. 1983. Evolutionarily stable sex ratios and sex allocations. J. Theor. Biol. 105: 525–539.

    Article  Google Scholar 

  • Lloyd, D. G. 1984. Gender allocations in outcrossing cosexual plants. In: R. Dirzo & J. Sarukhan, (eds.), Perspectives on plants population ecology, pp. 166–187. Sinauer, Sunderland,MS.

    Google Scholar 

  • Lovett-Doust, J. & Lovett-Doust, L. 1988. Plant reproductive ecology: patterns and strategies. Oxford U. Press, New York.

    Google Scholar 

  • Maynard-Smith, J. & Price, G. R. 1973. The logic of animal conflict. Nature, Lond. 246: 15–18.

    Article  Google Scholar 

  • Moermond, T. C. & Denslow, J. S. 1985. Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. In: P. A. Buckley, M. S. Foster, E. S. Morton, R. S. Ridgely & N. G. Buckley (eds.) Neotropical Ornithology. Onthological Monographs 36: 865–807.

    Google Scholar 

  • Murray, D. R. 1986. Seed dispersal. Academic Press, Sydney.

    Google Scholar 

  • Murray, K. G. 1988. Avian seed dispersal of three neotropical gap-dependent plants. Ecol. Monogr. 58: 271–298.

    Article  Google Scholar 

  • Olivieri, I. & Gouyon, P. H. 1985. Seed dimorphism for dispersal: theory and implications. In: J. Haeck & J. W. Woldendorp,(eds.) Structure and functioning of plant populations/2. Phenotypic and genotypic variation in plant populations. North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Ostle, B. & Mensing, R. W. 1975. Statistics in research. (3rd ed.) Iowa State University Press, Ames.

    Google Scholar 

  • Pickett, S. T. A. & White, P. S. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, Orlando FL.

    Google Scholar 

  • Price, G. R. 1972. Extension of covariance selection mathematics.Ann. hum. Genet. 35: 485–490.

    Article  PubMed  CAS  Google Scholar 

  • Queller, D. 1983. Kin selection and conflict in seed maturation.J. Theor. Biol. 100: 153–172.

    Article  Google Scholar 

  • Real, L. A. 1980. Fitness, uncertainty, and the role diversification in evolution and behavior. Am. Nat. 115: 623–635.

    Article  Google Scholar 

  • Salisbury, E. J. 1942. The reproductive capacity of plants. Bell, London.

    Google Scholar 

  • Schoen, D. J. & Lloyd, D. G. 1983. The selection of cleistogamy and heteromorphic diaspores. Biol. J. Linn. Soc. 23: 303–323.

    Article  Google Scholar 

  • Seger, J. & Brockmann, H. J. 1987. What is bet-hedging? Oxford Surveys in Evol. Biol. 4: 183–211.

    Google Scholar 

  • Silander, J. A. & Pacala, S. W. 1990. The application of plant population dynamic models to understanding plant competition.In: J. B. Grace & D. Tilman, (eds.), Perspectives on plant competition, pp. 67–92. Academic Press, San Diego.

    Google Scholar 

  • Simberloff, D. 1989. The contribution of population and community biology to conservation science. Ann. Rev. Ecol. Syst. 19: 473–512.

    Article  Google Scholar 

  • Stanton, M. & Galloway, L. F. 1991. Natural selection and allocation to reproduction in flowering plants. In: M. Mangel (ed.) Sex Allocation and sex change: experiments and models. Providence: American Math. Soc., pp. 1–50.

    Google Scholar 

  • Sugihara, G. & May, R. M. 1990. Applications of fractals in ecology. Tree 5: 79–86.

    PubMed  CAS  Google Scholar 

  • Swingland, I. R. & Greenwood, P. J. (eds.) 1983. The ecology of animal movement. Clarendon, Oxford.

    Google Scholar 

  • Taper, M. L. & Case, T. J. 1992. Models of character displacement and the theoretical robustness of taxon cycles. Evolution 46: 317–333.

    Article  Google Scholar 

  • Taylor, P. D. 1988. An inclusive fitness model for dispersal of offspring. J. Theor. Biol. 130: 363–378.

    Article  Google Scholar 

  • Vander Wall, S. B. & Balda, R. P. 1977. Coadaptations of the Clark’s Nutcracker and the pifion pine for efficient seed harvest and dispersal. Ecol. Monogr. 47: 89–111.

    Article  Google Scholar 

  • Venable, D. L. 1989. Modelling the evolutionary ecology of seed banks. In: M. A. Leck, V. T. Parker & R. L. Simpson (eds.). The ecology of soil seed banks, pp. 67–87. Academic Press, San Diego.

    Google Scholar 

  • Venable, D. L. & Brown, J. S. 1988. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 131: 360–384.

    Article  Google Scholar 

  • Venable, D. L., Búrquez, A., Corral, G., Morales, E. & Espinoza, F. 1987. Ecology of seed heteromophism in Heterosperma pinnatum in Central Mexico. Ecology 68: 65–76.

    Article  Google Scholar 

  • Venable, D. L. & Lawlor, L. R. 1980. Delayed germination in desert annuals: escape in space and time. Oecologia (Berl.) 46: 272–282.

    Article  Google Scholar 

  • Venable, D. L. & Levin, D. A. 1985. Ecology of seed polymorphism in Heterotheca latifolia: Achene structure, germination,dispersal. J. Ecol. 73: 133–145.

    Article  Google Scholar 

  • Vincent, T. L. & Brown, J. S. 1988. The evolution of ESS theory. Ann. Rev. Ecol. Syst. 19: 423–444.

    Article  Google Scholar 

  • Watkinson, A. R. 1980. Density-dependence in single-species populations of plants. J. Theor. Biol. 83: 345–357.

    Article  Google Scholar 

  • Wheelwright, N. T. & Orians, G. H. 1982. Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology,and constraints on coevolution. Am. Nat. 119: 402–413.

    Article  Google Scholar 

  • White, P. S. 1979. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 45: 229–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. H. Fleming A. Estrada

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Venable, D.L., Brown, J.S. (1993). The population-dynamic functions of seed dispersal. In: Fleming, T.H., Estrada, A. (eds) Frugivory and seed dispersal: ecological and evolutionary aspects. Advances in vegetation science, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1749-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1749-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4767-8

  • Online ISBN: 978-94-011-1749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics