Skip to main content

Techniques for the Growth of Crystalline Films by Molecular Beam Deposition

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 234))

Abstract

The preceding chapter laid out a physical basis for molecular beam deposition. In this chapter that conceptual framework will be translated into the reality of common laboratory apparatus and practices. As a starting point, classic semiconductor molecular beam epitaxy (MBE) [1,2] will be briefly described. Then, the focus will turn to leading edge equipment and technique issues that should be of interest to the broader thin film deposition audience for whom this volume is intended. Those issues include: alternate thermal deposition sources, ion beam doping, direct sensing of deposition fluxes and true deposition rate, and production considerations of uniformity, multiple wafer deposition, automation and particulate control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. C. Parker, “The Technology and Physics of Molecular Beam Epitaxy,” Plenum Press, New York and London (1985).

    Google Scholar 

  2. E. Kasper and J. C. Bean, “Silicon Molecular Beam Epitaxy,” Vols. 1 & 2, CRC Press,Boca Raton (1988).

    Google Scholar 

  3. A. Roth, “Vacuum Technology,” North-Holland, Amsterdam (1976).

    Google Scholar 

  4. J. F. O’Hanlon, “A Users Guide to Vacuum Technology,” John Wiley & Sons, New York (1980).

    Google Scholar 

  5. J. W. Robinson and M. Illegems, Rev. Sci. Instrum. 49 (1978) 205.

    Article  CAS  Google Scholar 

  6. G.E. Becker, J. Vac. Technol. 14 (1977) 640.

    Article  Google Scholar 

  7. R. A. A. Kubiak, W. Y. Leong, M. G. Dowsett, D. S. McPhail, R. Houghton and E. H. C.Parker, J. Vac. Sci. Technol. A4 (1986)1905.

    Google Scholar 

  8. J. C. Bean, G. E. Becker, P. M. Petroff and T. E. Seidel, J. Appl. Phys. 48 (1977) 907.

    Article  CAS  Google Scholar 

  9. Sputter cleaning based on hot filament ion sources (as described in the preceding reference) has the possible drawback of introducing low level metal contamination. Such sources may be displaced by recent inovations in low energy, non-filament, sources such as electron cyclotron resonance (ECR) units.

    Google Scholar 

  10. L. Pfeiffer, K. W. West, H. L. Stormer and K. L. Baldwin, Appl. Phys. Lett. 55 (1989) 1888

    Article  CAS  Google Scholar 

  11. M. Knudsen, Ann. Phys. (Leipzig) 4 (1909) 999.

    Google Scholar 

  12. J. C. Bean and E. A. Sadowski, J. Vac. Sci. Technol. 20 (1982) 137.

    Article  CAS  Google Scholar 

  13. R. F. C. Farrow and G. M. Williams, Thin Solid Films 55 (1978) 303.

    Article  CAS  Google Scholar 

  14. Models VG-6HT and VG-IOHT from EPI Div. of Chorus Corp., Saint Paul, MN, USA

    Google Scholar 

  15. R.A.A. Kubiak, W.Y. Leong and E.H.C. Parker, in “Silicon Molecular Beam Epitaxy,”Electrochemical Society Proc. Vol. 85–7 (1985) p. 169 .

    Google Scholar 

  16. A. P. Taylor, K. Yang and L. J. Schowalter, J. Vac. Sci. Technol. A9 (1991) 3181.

    Google Scholar 

  17. K. W. West, J. Vac. Technol. 17 (1980)1382.

    Article  CAS  Google Scholar 

  18. Turbocell Model BDS 7, Riber ISA, Rueil Cedex, France

    Google Scholar 

  19. R.J. Malik, R.N. Nottenburg, E.F. Schubert, J.F Walker and R.W. Ryan, Appl. Phys.Lett. 53 (1988) 2661.

    Article  CAS  Google Scholar 

  20. Silicon filament sources SUSI 35/63, carbon filament sources SUKO 35/63/150, MBE Komponenten GmbH, Stuttgart ,Germany.

    Google Scholar 

  21. G. E. Becker and J. C. Bean, J. Appl. Phys. 48 (1977) 3395.

    Article  CAS  Google Scholar 

  22. J. C Bean, Appl. Phys. Lett. 33 (1978) 654.

    Article  CAS  Google Scholar 

  23. R. M. Park, C. R. Stanley and R. Clampitt, Inst. Phys. Conf. Ser., p. 235, Chap. 6, No. 54 (1980) p. 235.

    CAS  Google Scholar 

  24. M.-A. Hasan, J. Knall, S.A. Barnett, A. Rockett, J.-E. Sundgren and J.E. Greene, J.Va. Sci. Technol. B5 (1987)1332.

    Article  Google Scholar 

  25. Model IC3PN “Pure loncell”, Oxford Applied Research, Crawley Mill, Witney,Oxfordshire UK.

    Google Scholar 

  26. P. Fons, N. Hirashita, L.C. Markert, Y.-W. Kim, J.E. Greene, W.-X. Ni, J. Knall,G.V. Hansson and J.-E. Sundgren, Appl. Phys. Lett. 53 (1988) 1732.

    Article  CAS  Google Scholar 

  27. M.A. Hasan, J. Knall, S.A. Barnett, J.-E. Sundgren, L.C. Markert, A. Rockett and J.E.Greene, J. Appl. Phys. 65 (1989)172.

    Article  CAS  Google Scholar 

  28. J.P. Noel, J.E. Greene, N.L. Rowell and D.C. Houghton, Appl. Phys. Lett. 56 (1990) 265.

    Article  CAS  Google Scholar 

  29. J. C. Bean, M. Cerullo and R. Leibenguth, in “Silicon Molecular Beam Epitaxy,” Electrochemical Society Proc. Vol. 88–8 (1988) p. 574.

    Google Scholar 

  30. J. C. Bean and R. Dingle, Appl. Phys. Lett. 35 (1979) 925.

    Article  CAS  Google Scholar 

  31. J.C. Bean, Proc. IEEE 80 (1992) 571.

    Article  CAS  Google Scholar 

  32. Twin Ion Source Low Energy Ion Implanter Model IBD/10/HT, Whickham Ion Beam Systems Ltd., Darlington, Durham UK.

    Google Scholar 

  33. M. B. Panish, J. Electrochem. Soc. 127 (1980) 2729.

    Article  CAS  Google Scholar 

  34. A. R. Calawa, Appl. Phys. Lett. 38 (1981) 701.

    Article  CAS  Google Scholar 

  35. R. Chow and Y. G. Chai, J. Vac. Sci. Technol. A! (1983) 49.

    Google Scholar 

  36. M. B. Panish and S. Sumski, J. Appl. Phys. 55 (1984) 3571.

    Article  CAS  Google Scholar 

  37. The 200cc cell pictured is from VG1 Fisons, East Grinstead, Sussex, UK. Models with up to 150 cc capacity are available from EPI Div. of Chorus Corp., Saint Paul, MN,USA.

    Google Scholar 

  38. R. N. Sacks, D. W. Eichler and R. A. Pastorello, J. Vac. Sci. Technol. B8 (1990) 168.

    Google Scholar 

  39. M.B. Panish and H. Temkin, “Gas Source Molecular Beam Epitaxy: Properties of Phosphorus Containing III-V Heterostructures,” in press, Springer-Verlag, Heidelberg

    Google Scholar 

  40. L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L.Lentine, R. E. Leibenguth, M. W. Focht, J. M. Freund, G. Guth and L. E. Smith, to be published IEEE J. Quant. Electron. (Dec 1992).

    Google Scholar 

  41. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, IEEE J. Quant.Elec. 27 (1991)1332.

    Article  CAS  Google Scholar 

  42. This Varian product line has recently been sold to the Intevac Corp., Santa Clara,Calif., USA.

    Google Scholar 

  43. A recent example is: G. Peter, A. Koller and S. Vazquez, J. Vac. Sci. Technol. A9 (1991) 3061.

    Google Scholar 

  44. “Sentinel III”, Inficon Leybold Hereaus, E. Syracuse, New York, USA.

    Google Scholar 

  45. R. Tung, Metallic Contacts to Silicon, Chap. 3 in “Contacts to Semiconductor Devices,” L.J. Brillson Ed., Noyef Press, Park Ridge, NJ (1992).

    Google Scholar 

  46. C. A. Gogol, R. A. Deutschman and J. C. Bean, J. Vac. Sci. Technol. AS (1987) 2077.

    Google Scholar 

  47. A. Y. Cho, Surf. Sci. 17 (1969) 494.

    Article  Google Scholar 

  48. J. H. Neave, B. A. Joyce, P. J. Dobson and N. Norton, Applied Physics A31 (1983) 1.

    CAS  Google Scholar 

  49. D. E. Aspnes, p. 799 in “Optical Properties of Solids: New Developments”, B. O.Seraphin Ed., North-Holland, Amsterdam (1976).

    Google Scholar 

  50. D. E. Aspnes, W. E. Quinn and S. Gregory, Appl. Phys. Lett. 56 (1990) 2569.

    Article  CAS  Google Scholar 

  51. W. E. Quinn, D. E. Aspnes, M. J. S. P. Brasil, M. A. A. Pudensi, S. A. Schwartz, M.C. Tamargo, S. Gregory and R. E. Nahory, J. Vac. Sci. Technol. B10 (1992) 759.

    Google Scholar 

  52. D. E. Aspnes, W. E. Quinn, M. C. Tamargo, S. Gregory, S. A. Schwartz, M.A.A.Pudensi, M. J. S. P. Brasil and R.E. Nahory, J. Vac. Sci Technol. A10 (1992)1840.

    Google Scholar 

  53. PLASMOS GmbH, Munich, Germany.

    Google Scholar 

  54. G. C. Aers and Z. R. Wasilewski, J. Vac. Sci. Technol. B10 (1992) 815.

    Google Scholar 

  55. J. C. Bean, in “Silicon Molecular Beam Epitaxy,” Electrochemical Society Proc. Vol. 88–8 (1988) p. 603.

    Google Scholar 

  56. D. Bellevance, Industrial Application: Perspective and Requirements, Chap. 13, in “Silicon Molecular Beam Epitaxy,” Vols 1 & 2, E. Kasper and J. C. Bean (Eds.), CRC Press. New York (1991).

    Google Scholar 

  57. G. Pindiora, R. F. Houghton, M. Hopkinson, R. A. A. Kubiak and E. H. C. Houghton,J. Vac. Sci. Technol. B8 (1990) 21.

    Google Scholar 

  58. S. Matteson and R. A. Bowling, J. Vac. Sci. Technol. A6 (1988) 2504.

    Google Scholar 

  59. T. Tatsumi, H. Hirayama and N. Aizaki, Appl. Phys. Lett. 54 (1988) 629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bean, J.C. (1993). Techniques for the Growth of Crystalline Films by Molecular Beam Deposition. In: Auciello, O., Engemann, J. (eds) Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices. NATO ASI Series, vol 234. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1727-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1727-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4757-9

  • Online ISBN: 978-94-011-1727-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics