Skip to main content

Cardioplegia with an extracellular formulation

  • Chapter
Ischemia-reperfusion in cardiac surgery

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 142))

Abstract

The clinical use of cardioplegia is now accepted world-wide for all aspects of cardiac surgery. Myocardial protection can be achieved with a number of cardioplegic solutions but, essentially, there are only two types of solution — the ‘extracellular-type’ and the ‘intracellular-type’. The latter has been covered in the preceding chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hearse DJ, Braimbridge MV., Jynge P. Protection of the ischemic myocardium: cardioplegia. New York: Raven Press, 1981.

    Google Scholar 

  2. Hearse DJ. Cardioplegia. Postgrad Med J 1983; 59 (Suppl 2): 11–24.

    PubMed  CAS  Google Scholar 

  3. Jynge P. Cardioplegic solutions and sodium-calcium relationships. In Calderera CM, Harris P (eds): Advances in Studies on Heart Metabolism. Bologna: CLUEB 1982; 36974.

    Google Scholar 

  4. Jynge P, Hearse DJ, Braimbridge MV. Protection of the ischemic myocardium. Volume-duration relationships and the efficacy of myocardial infusates. J Thorac Cardiovasc Surg 1978; 76: 698–705.

    PubMed  CAS  Google Scholar 

  5. Tyers GFO, Manley NJ, Williams EH et al. Preliminary clinical experience with isotonic potassium-induced arrest. J Thorac Cardiovasc Surg 1977; 74: 674–81.

    PubMed  CAS  Google Scholar 

  6. Kempsford RD, Hearse DJ. Protection of the immature myocardium during global ischemia. A comparison of four clinical cardioplegic solutions in the rabbit heart. J Thorac Cardiovasc Surg 1989; 97: 856–63.

    PubMed  CAS  Google Scholar 

  7. Braimbridge MV, Chayen J, Bitensky L et al. Cold cardioplegia or continuous coronary perfusion? J Thorac Cardiovasc Surg 1977; 74: 900–6.

    PubMed  CAS  Google Scholar 

  8. Hearse DJ, Stewart DA, Braimbridge MV. Cellular protection during myocardial ischemia. The development and characterisation of a procedure for the induction of reversible ischemic arrest. Circulation 1976; 54: 193–202.

    Article  PubMed  CAS  Google Scholar 

  9. Krebs HA, Henseleit K. Untersuchungen uber die Harnstoffbildung im Tierkorper. Hoppe Seylers Z Physiol Chem 1932; 210: 33–66.

    Article  CAS  Google Scholar 

  10. Jynge P, Hearse DJ, Feuvray D et al. The St Thomas’ Hospital cardioplegic solution: A characterisation in two species. Scand J Thorac Cardiovasc Surg 1981; (Suppl 30): 1–28.

    CAS  Google Scholar 

  11. Jynge P. Protection of the ischemic myocardium: cold chemical cardioplegia, coronary infusates and the importance of cellular calcium control. Thorac Cardiovasc Surgeon 1980; 28: 310–21.

    Article  CAS  Google Scholar 

  12. Yamamoto F, Braimbridge MV, Hearse DJ. Calcium and cardioplegia. J Thorac Cardiovasc Surg 1984; 87: 902–12.

    Google Scholar 

  13. Robinson LA, Harwood DL. Lowering the calcium concentration in St Thomas’ Hospital cardioplegic solution improves protection during hypothermic ischemia. J Thorac Cardiovasc Surg 1991; 101: 314–25.

    PubMed  CAS  Google Scholar 

  14. Takahashi A, Chambers DJ., Braimbridge MV et al. Long term hypothermic preservation of the heart: the optimal concentration of calcium in the St Thomas’ Hospital cardioplegic solution. J Mol Cell Cardiol 1989; 21 (Suppl II): S.121.

    Google Scholar 

  15. Boggs BR, Torchiana DF, Geffin GA et al. Optimal myocardial preservation with an acalcemic crystalloid cardioplegic solution. J Thorac Cardiovasc Surg 1987; 93: 838–46.

    PubMed  CAS  Google Scholar 

  16. Ettinger PO, Regan TJ, Oldewurtel HA. Hyperkalemia, cardiac conduction and the electrocardiogram: a review. Am Heart J 1974; 88: 360–71.

    Article  PubMed  CAS  Google Scholar 

  17. Kirsch U, Rodewald G, Kalmar P. Induced ischemic arrest: clinical experience with cardioplegia in open-heart surgery. J Thorac Cardiovasc Surg 1972; 63: 121–30.

    PubMed  CAS  Google Scholar 

  18. Hearse DJ, Stewart DA, Braimbridge MV. Myocardial protection during ischemic cardiac arrest. The importance of magnesium in cardioplegic infusates. J Thorac Cardiovasc Surg 1978; 75: 877–85.

    PubMed  CAS  Google Scholar 

  19. Reynolds TR, Geffin GA, Titus JS et al. Myocardial preservation related to magnesium content of hyperkalemic cardioplegic solutions at 8°C. Ann Thorac Surg 1989; 47: 90713.

    Article  Google Scholar 

  20. Geffin GA, Love TR, Hendren WG et al. The effects of calcium and magnesium in hyperkalemic cardioplegic solutions on myocardial preservation. J Thorac Cardiovasc Surg 1989; 98: 239–50.

    PubMed  CAS  Google Scholar 

  21. Kinoshita K, Oe M, Tokunaga K. Superior protective effect of low-calcium, magnesium-free potassium cardioplegic solution on ischemic myocardium. Clinical study in comparison with St Thomas’ Hospital solution. J Thorac Cardiovasc Surg 1991; 101: 695–702.

    PubMed  CAS  Google Scholar 

  22. Gay WA, Ebert PA. Functional, metabolic and morphological effects of potassium-induced cardioplegia. Surgery 1973; 74: 284–90.

    PubMed  Google Scholar 

  23. Roe BB, Hutchinson JC., Fishman NH et al. Myocardial protection with cold, ischemic, potassium-induced cardioplegia. J Thorac Cardiovasc Surg 1977; 73: 366–70.

    PubMed  CAS  Google Scholar 

  24. Conti VR, Bertranou EG, Blackstone EH et al. Cold cardioplegia versus hypothermia for myocardial protection. Randomized clinical study. J Thorac Cardiovasc Surg 1978; 76: 577–86.

    PubMed  CAS  Google Scholar 

  25. Robinson LA, Braimbridge MV, Hearse DJ. Comparison of the protective properties of four clinical crystalloid cardioplegic solutions in the rat heart. Ann Thorac Surg 1984; 38: 268–74.

    Article  PubMed  CAS  Google Scholar 

  26. Ledingham SJM, Braimbridge MV, Hearse DJ. The St Thomas’ Hospital cardioplegic solution. A comparison of the efficacy of two formulations. J Thorac Cardiovasc Surg 1987; 93: 240–6.

    PubMed  CAS  Google Scholar 

  27. Chambers DJ, Sakai A, Braimbridge MV et al. Clinical validation of St Thomas’ Hospital cardioplegic solution No 2 (Plegisol). Eur J Cardio-thorac Surg 1989; 3: 346–52.

    Article  CAS  Google Scholar 

  28. Krause BL, Wakefield JSJ, McMillan AB et al. Protection of the ischaemic myocardium by glucose-insulin-potassium infusion assessed by ventricular function and electron microscopy. J Cardiovasc Surg 1978; 19: 421–32.

    CAS  Google Scholar 

  29. Lolley DM., Ray JF, Myers WO et al. Reduction of intraoperative myocardial infarction by means of exogenous anaerobic substrate enhancement: prospective randomized study. Ann Thorac Surg 1978; 26: 515–23.

    Article  PubMed  CAS  Google Scholar 

  30. von Oppell UO., Du Toit EF, King LM et al. St Thomas’ Hospital cardioplegic solution. Beneficial effect of glucose and multidose reinfusions of cardioplegic solution. J Thorac Cardiovasc Surg 1991; 102: 405–12.

    Google Scholar 

  31. Hearse DJ, Stewart DA, Braimbridge MV. Myocardial protection during ischemic cardiac arrest. Possible deleterious effects of glucose and mannitol in coronary infusates. J Thorac Cardiovasc Surg 1978; 76: 16–23.

    PubMed  CAS  Google Scholar 

  32. Yamamoto F, Manning AS, Braimbridge MV et al. Calcium antagonists and myocardial protection during cardioplegic arrest. In Dhalla NS, Hearse DJ (eds): Advances in myocardiology. New York: Plenum Press 1985; 545–62.

    Google Scholar 

  33. Murashita T., Hearse DJ, Avkiran M. Effects of diltiazem as an additive to St Thomas’ Hospital cardioplegic solution in isolated neonatal and adult rabbit hearts. Cardiovasc Res 1991; 25: 496–502.

    Article  PubMed  CAS  Google Scholar 

  34. Guyton RA, Dorsey LM, Colgan TK et al. Calcium-channel blockade as an adjunct to heterogeneous delivery of cardioplegia. Ann Thorac Surg 1983; 35: 626–31.

    Article  PubMed  CAS  Google Scholar 

  35. Chiavarelli M, Chiavarelli R., Macchiarelli A et al. Calcium entry blockers and cardioplegia: interaction between nifedipine, potassium, and hypothermia. Ann Thorac Surg 1986; 41: 535–41.

    Article  PubMed  CAS  Google Scholar 

  36. Flameng W, De Meyere R, Daenen W et al. Nifedipine as an adjunct to St Thomas’ Hospital cardioplegia. A double-blind, placebo-controlled, randomized clinical trial. J Thorac Cardiovasc Surg 1986; 91: 723–31.

    PubMed  CAS  Google Scholar 

  37. Guffin AV, Kates RA, Holbrook GW et al. Verapamil and myocardial preservation in patients undergoing coronary artery bypass surgery. Ann Thorac Surg 1986; 41: 587–91.

    Article  PubMed  CAS  Google Scholar 

  38. Christakis GT, Fremes SE, Weisel RD et al. Diltiazem cardioplegia. A balance of risk and benefit. J Thorac Cardiovasc Surg 1986; 91: 647–61.

    PubMed  CAS  Google Scholar 

  39. McCall DM. Responses of cultured heart cells to procainamide and lignocaine. Cardiovasc Surg 1978; 12: 529–36.

    CAS  Google Scholar 

  40. Harlan BJ, Ross D, MacManus Q et al. Cardioplegic solutions for myocardial preservation. Analysis of hypothermic arrest, potassium arrest, and procaine arrest. Circulation 1978; 58 (Suppl I): I-114-I-118.

    CAS  Google Scholar 

  41. Hearse DJ, O‘Brien K, Braimbridge MV. Protection of the myocardium during ischemic arrest. Dose-response curves for procaine and lignocaine in cardioplegic solutions. J Thorac Cardiovasc Surg 1981; 81: 873–9.

    PubMed  CAS  Google Scholar 

  42. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244: 6049–55.

    PubMed  CAS  Google Scholar 

  43. Parks DA, Bulkley GB, Granger DM et al. Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 1982; 82: 9–15.

    PubMed  CAS  Google Scholar 

  44. Shlafer M, Kane PR Wiggins VY et al. Possible role for cytotoxic oxygen metabolites in the pathogenesis of cardiac ischemic injury. Circulation 1982; 66 (Suppl I): I-85-I-92.

    CAS  Google Scholar 

  45. Shlafer M, Kane PF, Kirsh MM. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg 1982; 83: 830–9.

    PubMed  CAS  Google Scholar 

  46. Stewart JR, Blackwell WH, Crute SL et al. Inhibition of surgically induced ischemia/reperfusion injury by oxygen free radical scavengers. J Thorac Cardiovasc Surg 1983; 86: 26272.

    Google Scholar 

  47. Myers CL, Weiss SJ, Kirsh MM et al. Effects of supplementing hypothermic crystalloid cardioplegic solution with catalase, superoxide dismutase, allopurinol, or deferoxamine on functional recovery of globally ischemic and reperfused isolated hearts. J Thorac Cardiovasc Surg 1986; 91: 281–9.

    PubMed  CAS  Google Scholar 

  48. Chambers DJ, Braimbridge MV, Hearse DJ. Free radicals and cardioplegia. Free radical scavengers improve post-ischemic function of rat myocardium. Eur J Cardio-thorac Surg 1987; 1: 37–45.

    Article  CAS  Google Scholar 

  49. Chambers DJ, Braimbridge MV., Hearse DJ. Free radicals and cardioplegia: allopurinol and oxypurinol reduce myocardial injury following ischemic arrest. Ann Thorac Surg 1987; 44: 291–7.

    Article  PubMed  CAS  Google Scholar 

  50. Menasché P, Grousset C, Gaudel Y et al. Prevention of hydroxyl radical formation: a critical concept for improving cardioplegia. Protective effects of deferoxamine. Circulation 1987; 76 (Suppl V): V-180-V-185.

    Google Scholar 

  51. Bernard M, Menasché P, Piétri S et al. Cardioplegic arrest superimposed on evolving myocardial ischemia. Improved recovery after inhibition of hydroxyl radical generation by peroxidase or deferoxamine. A 31P nuclear resonance study. Circulation 1988; 78 (Suppl III): III-164-III-172.

    CAS  Google Scholar 

  52. Menasché P, Pasquier C, Bellucci S et al. Deferoxamine reduces neutrophil-mediated free radical production during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1988; 96: 582–9.

    PubMed  Google Scholar 

  53. Eddy LJ, Stewart JR, Jones HP et al. Free radical-producing enzyme, xanth ne oxidase, is undetectable in human hearts. Am J Physiol 1987; 253: H709–H711.

    PubMed  CAS  Google Scholar 

  54. Robinson LA, Braimbridge MV, Hearse DJ. Creatine phosphate: an additive myocardial protective and antiarrhythmic agent in cardioplegia. J Thorac Cardiovasc Surg 1984; 87: 190–200.

    PubMed  CAS  Google Scholar 

  55. Robinson LA, Braimbridge MV., Hearse DJ. Enhanced myocardial protection with high-energy phosphates in St Thomas’ Hospital cardioplegic solution. Synergism of adenosine triphosphate and creatine phosphate. J Thorac Cardiovasc Surg 1987; 93: 415–27.

    PubMed  CAS  Google Scholar 

  56. Chambers DJ, Braimbridge MV, Kosker S et al. Creatine phosphate (Neoton) as an additive to St Thomas’ Hospital cardioplegic solution (Plegisol). Results of a clinical study. Eur J Cardio-thorac Surg 1991; 5: 74–81.

    Article  CAS  Google Scholar 

  57. Robinson LA, Harwood DL. Exogenous creatine phosphate: favorable calcium-altering effects in St Thomas’ Hospital cardioplegic solution. J Am Coll Cardiol 1988; 11: 170A.

    Google Scholar 

  58. Hohl CM, Hearse DJ. Vascular and contractile responses to extracellular ATP: studies in the isolated rat heart. Can J Cardiol 1985; 1: 207–16.

    PubMed  CAS  Google Scholar 

  59. Conorev EA, Sharov VG, Saks VA. Improvement in contractile recovery of isolated rat heart after cardioplegic ischaemic arrest with endogenous phosphocreatine: involvement of antiperoxidative effect? Cardiovasc Res 1991; 25: 164–71.

    Article  PubMed  CAS  Google Scholar 

  60. Zucchi R, Poddighe R, Limbruno U et al. Protection of isolated rat heart from oxidative stress by exogenous creatine phosphate. J Mol Cell Cardiol 1989; 21: 67–73.

    Article  PubMed  CAS  Google Scholar 

  61. Thelin S, Hultman J, Ronquist G et al. Enhanced protection of rat hearts during ischemia by phosphoenolpyruvate and ATP in cardioplegia. Thorac Cardiovasc Surgeon 1986; 34: 104–9.

    Article  CAS  Google Scholar 

  62. DeWitt DF, Jochim KE, Behrendt DM. Nucleotide degradation and functional impairment during cardioplegia: amelioration by inosine. Circulation 1983; 67: 171–8.

    Article  PubMed  CAS  Google Scholar 

  63. Devous MD, Lewandowski ED. Inosine preserves ATP during ischemia and enhances recovery during reperfusion. Am J Physiol 1987; 253: H1224–H1233.

    PubMed  CAS  Google Scholar 

  64. Schubert T, Vetter H, Owen P et al. Adenosine cardioplegia. Adenosine versus potassium cardioplegia: Effects on cardiac arrest and post-ischemic recovery in the isolated rat heart. J Thorac Cardiovasc Surg 1989: 98: 1057–65.

    PubMed  CAS  Google Scholar 

  65. De Jong JW, van der Meer P, van Loon HA et al. Adenosine as adjunct to potassium cardioplegia: effect on function, energy metabolism, and electrophysiology. J Thorac Cardiovasc Surg 1990; 100: 445–54.

    PubMed  Google Scholar 

  66. Bolling SF, Bies LE, Bove EL et al. Augmenting intracellular adenosine improves myocardial recovery. J Thorac Cardiovasc Surg 1990; 99: 469–74.

    PubMed  CAS  Google Scholar 

  67. Ledingham S, Katayama O, Lachno D et al. Beneficial effect of adenosine during reperfusion following prolonged cardioplegic arrest. Cardiovasc Res 1990; 24: 247–53.

    Article  PubMed  CAS  Google Scholar 

  68. Rau EE, Shine KI, Gervais A et al. Enhanced mechanical recovery of anoxic and ischemic myocardium by amino acid perfusion. Am J Physiol 1979; 236: H873–H879.

    PubMed  CAS  Google Scholar 

  69. Pisarenko OL, Solomatina ES, Studneva IM et al. Protective effect of glutamic acid on cardiac function and metabolism during cardioplegia and reperfusion. Basic Res Cardiol 1983; 78: 534–43.

    Article  PubMed  CAS  Google Scholar 

  70. Gharagozloo F, Melendez FJ, Hein RA et al. The effect of amino acid L-glutamate on the extended preservation ex vivo of the heart for transplanation. Circulation 1987; 76 (Suppl V): V-65-V-70.

    CAS  Google Scholar 

  71. Choong YS, Gavin JB. L-aspartate improves the functional recovery of explanted hearts stored in St Thomas’ Hospital cardioplegic solution at 4°C. J Thorac Cardiovasc Surg 1990; 99: 510–7.

    PubMed  CAS  Google Scholar 

  72. Tyers GFO, Todd GJ, Niebauer IM et al. Effect of intracoronary tetrodotoxin on recovery of the isolated working rat heart from sixty minutes of ischemia. Circulation 1974; 49/50 (Suppl II): II-175-II-179.

    Google Scholar 

  73. Sternbergh WC, Brunsting LA, Abd-Elfattah AS et al. Basal metabolic energy requirements of polarized and depolarized arrest in rat heart. Am J Physiol 1989; 256: H846–H851.

    PubMed  CAS  Google Scholar 

  74. Wikman-Coffelt J, Wagner S, Wu S et al. Alcohol and pyruvate cardioplegia. Twenty-four-hour in situ preservation of hamster hearts. J Thorac Cardiovasc Surg 1991; 101: 50916.

    Google Scholar 

  75. Engelman RM, Rousou JH, Dobbs W et al. The superiority of blood cardioplegia in myocardial preservation. Circulation 1980; 62 (Suppl I): I-62-I-66.

    CAS  Google Scholar 

  76. Digerness SB, Vanini V, Wideman FE. In vitro comparison of oxygen availability from asanguinous and sanguinous cardioplegic media. Circulation 1981; 64 (Suppl II): II-80-II-83.

    CAS  Google Scholar 

  77. Bodenhamer RM, DeBoer LWV, Geffin GA et al. Enhanced myocardial protection during ischemic arrest. Oxygenation of a crystalloid cardioplegic solution. J Thorac Cardiovasc Surg 1983; 85: 769–80.

    PubMed  CAS  Google Scholar 

  78. Bing OHL, LaRaia PJ, Stoughton FJ et al. Mechanism of myocardial protection during blood-potassium cardioplegia: a comparison of crystalloid red cell and methemoglohin solutions. Circulation 1984 70 (Suppl I): I-84-I-90.

    CAS  Google Scholar 

  79. Heitmiller RF, BeBoer LWV, Geffin GA et al. Myocardial recovery after hypothermic arrest: a comparison of oxygenated crystalloid to blood cardioplegia. A role of calcium. Circulation 1985; 72 (Suppl II): II-241-II-253.

    CAS  Google Scholar 

  80. Magovern GJ Jr., Flaherty JT, Gott VL et al. Failure of blood cardioplegia to protect myocardium at lower temperatures. Circulation 1982; 66 (Suppl I): I-60-I-67.

    Google Scholar 

  81. Rousou JA, Engelman RM, Breyer RH et al. The effect of temperature and hematocrit level of oxygenated cardioplegic solutions on myocardial preservation. J Thorac Cardiovasc Surg 1988; 95: 625–30.

    PubMed  CAS  Google Scholar 

  82. Ledingham SJM, Braimbridge MV, Hearse DJ. Improved myocardial protection by oxygenation of the St Thomas’ Hospital cardioplegic solution. J Thorac Cardiovasc Surg 1988; 95: 103–11.

    PubMed  CAS  Google Scholar 

  83. von Oppell UO, King LM, Du Toit EF et al. Effect of oxygenation and consequent pH changes on the efficacy of St Thomas’ Hospital cardioplegic solution. J Thorac Cardiovasc Surg 1991; 102: 396–404.

    Google Scholar 

  84. Tabayashi K, McKeown PP, Miyamoto M et al. Ischemic myocardial protection. Comparison of nonoxygenated crystalloid, oxygenated crystalloid, and oxygenated fluorocarbon cardioplegic solutions. J Thorac Cardiovasc Surg 1988; 95: 239–46.

    PubMed  CAS  Google Scholar 

  85. Guyton RA, Dorsey LMA, Craver JM et al. Improved myocardial recovery after cardioplegic arrest with an oxygenated crystalloid solution. J Thorac Cardiovasc Surg 1985; 89: 87787.

    Google Scholar 

  86. Daggett WM Jr., Randolph JD, Jacobs M et al. The superiority of cold oxygenated dilute blood cardioplegia. Ann Thorac Surg 1987; 43: 397–402.

    Article  PubMed  Google Scholar 

  87. Chambers DJ, Kosker S, Takahashi A et al. Comparison of standard (non-oxygenated) vs. oxygenated St Thomas’ Hospital cardioplegic solution No 2 (Plegisol). Eur J Cardiothorac Surg 1990; 4: 549–55.

    Article  PubMed  CAS  Google Scholar 

  88. Bernhard WF, Schwartz HF, Mallick NP. Profound hypothermia as an adjunct to cardiovascular surgery. J Thorac Cardiovasc Surg 1961; 42: 263–74.

    Google Scholar 

  89. Greenberg JJ, Edmunds LH. Effect of myocardial ischemia at varying temperatures on left ventricular function and tissue tension. J Thorac Cardiovasc Surg 1961; 42: 84–91.

    PubMed  CAS  Google Scholar 

  90. Griepp RB, Stinson EB, Shumway NE. Profound local hypothermia for myocardial protection during open-heart surgery. J Thorac Cardiovasc Surg 1973; 66: 731–41.

    PubMed  CAS  Google Scholar 

  91. Hearse DJ, Stewart DA, Braimbridge MV. Hypothermic arrest and potassium arrest: metabolic and myocardial protection during elective cardiac arrest. Circ Res 1975; 36: 481–9.

    Article  PubMed  CAS  Google Scholar 

  92. Gillette PC, Pinsky WW, Lewis RM et al. Myocardial depression after elective ischemic arrest: subcellular biochemistry and prevention. J Thorac Cardiovasc Surg 1979; 77: 60818.

    Google Scholar 

  93. Rosenfeldt FL, Hearse DJ, Cankovic-Darracott S et al. The additive protective effects of hypothermia and chemical cardioplegia during ischemic cardiac arrest in the dog. J Thorac Cardiovasc Surg 1980; 79: 29–38.

    PubMed  CAS  Google Scholar 

  94. Hearse DJ, Stewart DA, Braimbridge MV. The additive protective effects of hypothermia and chemical cardioplegia during ischemic cardiac arrest in the rat. J Thorac Cardiovasc Surg 1980; 79: 39–43.

    PubMed  CAS  Google Scholar 

  95. Borst HG, Iversen ST. Myocardial temperatures in clinical cardioplegia. Thorac Cardiovasc Surgeon 1980: 28: 29–33.

    Article  CAS  Google Scholar 

  96. Rabinov M, Chen XZ, Rosenfeldt FL. Comparison of the metabolic response of the hypertrophic and the normal heart to hypothermic cardioplegia. The effect of temperature. J Thorac Cardiovasc Surg 1989: 97: 43–9.

    PubMed  CAS  Google Scholar 

  97. Lichtenstein SV, Abel JG, Panos A et al. Warm heart surgery: experience with long cross-clamp times. Ann Thorac Surg 1991; 52: 1009–13.

    Article  PubMed  CAS  Google Scholar 

  98. Landymore RW, Marble AE, Eng P et al. Myocardial oxygen consumption and lactate production during antegrade warm blood cardioplegia. Eur J Cardio-thorac Surg 1992; 6: 372–6.

    Article  CAS  Google Scholar 

  99. Rahn H, Reeves RB, Howell BJ. Hydrogen ion regulation, temperature, and evolution. Am Rev Resp Dis 1975; 112: 165–72.

    PubMed  CAS  Google Scholar 

  100. Hearse DJ, Stewart DA, Braimbridge MV. Myocardial protection during bypass and arrest. A possible hazard with lactate-containing infusates. J Thorac Cardiovasc Surg 1976; 72: 880–4.

    PubMed  CAS  Google Scholar 

  101. Buckberg GD. A proposed “solution” to the cardioplegic controversy. J Thorac Cardiovasc Surg 1979; 77: 803–15.

    PubMed  CAS  Google Scholar 

  102. Nugent WC, Levine FH, Liapis CD et al. Effect of the pH of cardioplegic solution on postarrest myocardial preservation. Circulation 1982; 66 (Suppl I): I-68-I-72.

    CAS  Google Scholar 

  103. Bernard M, Menasché P, Canioni PJ et al. Influence of the pH of cardioplegic solutions on intracellular pH, high-energy phosphates, and postarrest performance. Protective effects of acidotic, glutamate-containing cardioplegic perfusates. J Thorac Cardiovasc Surg 1985; 90: 235–42.

    PubMed  CAS  Google Scholar 

  104. Tait GA, Booker PD, Wilson GJ et al. Effect of multidose cardioplegia and cardioplegic solution buffering on myocardial tissue acidosis. J Thorac Cardiovasc Surg 1982; 83: 824–9.

    PubMed  CAS  Google Scholar 

  105. Lange R, Cavanaugh AC, Zierler M et al. The relative importance of alkalinity, temperature, and the washout effect of bicarbonate-buffered, multidose cardioplegic solution. Circulation 1984; 70 (Suppl I): I-75-I-83.

    CAS  Google Scholar 

  106. Takach TJ, Glassman LR, Ribakove GH et al. Continuous measurement of intramyocardial pH: correlation to functional recovery following normothermic and hypothermic global ischemia. Ann Thorac Surg 1986: 42: 31–6.

    Article  PubMed  CAS  Google Scholar 

  107. Vander Woude JC, Christlieb 1Y, Sicard GA et al. Imidazole-buffered cardioplegic solution. Improved myocardial preservation during global ischemia. J Thorac Cardiovasc Surg 1985; 90: 225–34.

    Google Scholar 

  108. von Oppell UO, King LM, Du Toit EF et al. Effect of pH shifts induced by oxygenating crystalloid cardioplegic solutions. Ann Thorac Surg 1991; 52: 903–7.

    Article  Google Scholar 

  109. Braimbridge MV, Hearse DJ, Chayen J et al. Cold cardioplegia versus continuous coronary perfusion: clinical and cytochemical assessment. In. Longmore DB (ed): Modern Cardiac Surgery. London: MTP Press 1978; 285–98.

    Chapter  Google Scholar 

  110. Solorzano J, Taitelbaum G, Chiu R C-J. Retrograde coronary sinus perfusion for myocardial protection during cardiopulmonary bypass. Ann Thorac Surg 1978; 25: 201–8.

    Article  PubMed  CAS  Google Scholar 

  111. Menasché P, Kural S, Fauchet M et al. Retrograde coronary sinus perfusion: a safe alternative for ensuring cardioplegic delivery in aortic valve surgery. Ann Thorac Surg 1982; 34: 647–58.

    Article  PubMed  Google Scholar 

  112. Mori F, Ivey TD, Tabayashi K et al. Regional myocardial protection by retrograde coronary sinus infusion of cardioplegic solution. Circulation 1986: 74 (Suppl III): III-116-III-124.

    CAS  Google Scholar 

  113. Masuda M, Yonenaga K, Shiki K et al. Myocardial protection in coronary occlusion by retrograde cardioplegic perfusion via the coronary sinus in dogs. Preservation of high-energy phosphates and regional function. J Thorac Cardiovasc Surg 1986; 92: 255–63.

    PubMed  CAS  Google Scholar 

  114. Fabiani J-N, Reiland J, Carpentier A. Myocardial protection via the coronary sinus in cardiac surgery: comparative evaluation of two techniques. In Mohl W, Wolner E, Glogar D (eds): The Coronary Sinus. Darmstadt: Steinkopff Vertag, 1984: 305–11.

    Google Scholar 

  115. Salter DR, Goldstein JP, Abd-Elfattah A et al. Ventricular function after atrial cardioplegia. Circulation 1987; 76 (Suppl V): V-129-V-140.

    CAS  Google Scholar 

  116. Partington MT, Acar C, Buckberg GD et al. Studies of retrograde cardioplegia II Advantages of antegrade/retrograde cardioplegia to optimize distribution in jeopardized myocardium. J Thorac Cardiovasc Surg 1989; 97: 613–22.

    PubMed  CAS  Google Scholar 

  117. Cankovic-Darracott S, Braimbridge MV, Chayen J. Biopsy assessment of preservation during open-heart surgery with cold cardioplegic arrest. In Chazov E, Saks V. Rona G (eds): Advances in Myocardiology. Plenum Publishing Corporation, 1983; 497–504.

    Google Scholar 

  118. Chambers DJ. Darracott-Cankovic S, Braimbridge MV. Clinical and quantitative birefringence assessment of 100 patients with aortic clamping periods in excess of 120 minutes after hypothermic cardioplegic arrest. Thorac Cardiovasc Surgeon 1983; 31: 266–72.

    Article  CAS  Google Scholar 

  119. Engelman RM, Levitsky S, O‘Donoghue MJ et al. Cardioplegia and myocardial preservation during cardiopulmonary bypass. Circulation 1978; 58: 107–13.

    Google Scholar 

  120. Engelman RM, Rousou JH, Vertrees RA et al. Safety of prolonged ischemic arrest using hypothermic cardioplegia. J Thorac Cardiovasc Surg 1980; 79: 705–12.

    PubMed  CAS  Google Scholar 

  121. Takahashi A, Chambers DJ, Braimbridge MV et al. Optimal myocardial protection during crystalloid cardioplegia. Interrelationship between volume and duration of infusion. J Thorac Cardiovasc Surg 1988; 96: 730–40.

    PubMed  CAS  Google Scholar 

  122. Engelman RM, Rousou JH, Lemeshow S. High-volume crystalloid cardioplegia. An improved method of myocardial preservation. J Thorac Cardiovasc Surg 1983; 86: 87–96.

    PubMed  CAS  Google Scholar 

  123. Saydjari R, Asimakis G, Conti VR. Effect of increasing volume of cardioplegic solution on post-ischemic myocardial recovery. J Thorac Cardiovasc Surg 1987; 94: 234–40.

    PubMed  CAS  Google Scholar 

  124. Preusse CJ, Schulte HD, Bircks W. High volume cardioplegia. Ann Chirurg Gynaecol 1987; 76: 39–45.

    CAS  Google Scholar 

  125. Magovern JA, Pae WE, Miller CA et al. The immature and the mature myocardium. Responses to multidose crystalloid cardioplegia. J Thorac Cardiovasc Surg 1988; 95: 618–24.

    PubMed  CAS  Google Scholar 

  126. Magovern JA, Pae WE. Waldhausen JA. Protection of the immature myocardium. An experimental evaluation of topical cooling, single-dose, and multiple-dose administration of St Thomas’ Hospital cardioplegic solution. J Thorac Cardiovasc Surg 1988; 96: 408–13.

    PubMed  CAS  Google Scholar 

  127. Kempsford RD. Hearse DJ. Protection of the immature heart. Temperature dependent beneficial or detrimental effects of multidose crystalloid cardioplegia in the neonatal rabbit heart. J Thorac Cardiovasc Surg 1990; 99: 269–79.

    PubMed  CAS  Google Scholar 

  128. Robertson JM, Buckberg GD, Vinten-Johansen JJ et al. Comparison of distribution beyond coronary stenoses of blood and asanguineous cardioplegic solutions. J Thorac Cardiovasc Surg 1983; 86: 80–6.

    PubMed  CAS  Google Scholar 

  129. Eugene I, Lyons KP, Ott RA et al. Regional myocardial perfusion of cardioplegic solutions. Ann Thorac Surg 1987; 43: 522–26.

    Article  PubMed  CAS  Google Scholar 

  130. Kondo Y, Gradel FO, Chaptal P-A et al. Immediate and delayed orthotopic homotransplantation of the heart. J Thorac Cardiovasc Surg 1965; 50: 781–9.

    PubMed  CAS  Google Scholar 

  131. Proctor E, Parker R. Preservation of isolated hearts for 72 hours. Brit Med J 1968; 296–8.

    Google Scholar 

  132. Levitsky S, Williams WH, Detmer DE et al. A functional evaluation of the preserved heart. J Thorac Cardiovasc Surg 1970; 60: 625–34.

    PubMed  CAS  Google Scholar 

  133. Proctor E, Matthews G, Archibald J. Acute orthotopic transplantation of hearts stored for 72 hours. Thorax 1971; 26: 99–102.

    Article  PubMed  CAS  Google Scholar 

  134. Copeland JG, Jones M, Spragg R et al. In vitro preservation of canine hearts for 24 to 48 hours followed by successful orthotopic transplantation. Ann Surg 1973; 178: 687–92.

    Article  PubMed  CAS  Google Scholar 

  135. Collins GM, Bravo-Shugarman M, Terasaki PI. Kidney preservation for transplantation. Initial perfusion and 30 hours‘ ice storage. Lancet 1969; ii: 1219.

    Article  Google Scholar 

  136. Sacks SA, Petritsch PH, Kaufman JJ. Canine kidney preservation using a new perfusate. Lancet 1973; ii: 1024–8.

    Article  Google Scholar 

  137. Swanson DK, Pasaoglu I, Berkoff HA et al. Improved heart preservation with UW preservation solution. J Heart Transplant 1988; 7: 456–67.

    PubMed  CAS  Google Scholar 

  138. English TA, Foreman J, Gadian DG et al. Three solutions for preservation of the rabbit heart at 0°C. A comparison with phosphorus-31 nuclear magnetic resonance spectroscopy. J Thorac Cardiovasc Surg 1988; 96: 54–61.

    PubMed  CAS  Google Scholar 

  139. Darracott-Cankovic S, Wheeldon D, Cory-Pearce R et al. Biopsy assessment of fifty hearts during transplantation. J Thorac Cardiovasc Surg 1987; 93: 95–102.

    PubMed  CAS  Google Scholar 

  140. Wicomb W, Cooper DKC, Hassoulas J et al. Orthotopic transplantation of the baboon heart after 20 to 24 hours‘ preservation by continuous hypothermic perfusion with an oxygenated hyperosmolar solution. J Thorac Cardiovasc Surg 1982; 83: 133–40.

    PubMed  CAS  Google Scholar 

  141. Wicomb WN, Cooper DKC, Novitzky D et al. Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. Ann Thorac Surg 1984; 37: 243–48.

    Article  PubMed  CAS  Google Scholar 

  142. Wicomb WN, Rose AG, Cooper DK et al. Hemodynamic and myocardial histologic and ultrastructural studies on baboons from 3 to 27 months following autotransplantation of hearts stored by hypothermic perfusion for 24 or 48 hours. J Heart Transplant 1986; 5: 122–9.

    PubMed  CAS  Google Scholar 

  143. Burt JM, Larson DF, Copeland JG. Recovery of heart function following 24 hours preservation and ectopic transplantation. J Heart Transplant 1986; 5: 298–303.

    PubMed  CAS  Google Scholar 

  144. Burt JM, Copeland JG. Myocardial function after preservation for 2 hours. J Thorac Cardiovasc Surg 1986; 92: 238–46.

    PubMed  CAS  Google Scholar 

  145. Takahashi A, Braimbridge MV, Hearse DJ et al. Long-term preservation of the mammalian myocardium. Effect of storage medium and temperature on the vulnerability to tissue injury. J Thorac Cardiovasc Surg 1991; 102: 235–45.

    PubMed  CAS  Google Scholar 

  146. Takahashi A, Hearse DJ, Braimbridge MV et al. Harvesting hearts for long-term preservation. Detrimental effects of initial hypothermic infusion of cardioplegic solutions. J Thorac Cardiovasc Surg 1990; 100: 371–8.

    CAS  Google Scholar 

  147. Chambers DJ, Takahashi A, Hearse DJ. Long-term preservation of the heart: The effect of infusion pressure during continuous hypothermic cardioplegia. J Heart Lung Transplant 1992; 11: 665–75.

    PubMed  CAS  Google Scholar 

  148. Hendry PJ, Anstadt MP, Plunkett MD et al. Optimal temperature for preservation of donor myocardium. Circulation 1990; 82 (Suppl IV): IV-306-IV-312.

    CAS  Google Scholar 

  149. Choong YS, Gavin JB. Functional recovery of hearts after cardioplegia and storage in University of Wisconsin and in St Thomas’ Hospital solutions. J Heart Lung Transplant 1991; 10: 537–46.

    PubMed  CAS  Google Scholar 

  150. Ledingham SJM, Katayama O, Lachno DR et al. Prolonged cardiac preservation. Evaluation of the University of Wisconsin preservation solution by comparison with the St Thomas’ Hospital cardioplegic solutions in the rat. Circulation 1990; 82 (Suppl IV): IV351-IV-358.

    CAS  Google Scholar 

  151. Yeh T, Hanan SA, Johnson DE et al. Superior myocardial preservation with modified UW solution after prolonged ischemia in the rat heart. Ann Thorac Surg 1990; 49: 932–9.

    Article  PubMed  Google Scholar 

  152. Bull C, Cooper J, Stark J. Cardioplegic protection of the child‘s heart. J Thorac Cardiovasc Surg 1984; 88: 287–93.

    PubMed  CAS  Google Scholar 

  153. Bove EL, Stammers AH. Recovery of left ventricular function after hypothermic global ischemia. Age-related differences in the isolated working rabbit heart. J Thorac Cardiovasc Surg 1986; 91: 115–22.

    PubMed  CAS  Google Scholar 

  154. Bove EL, Stammers AH, Gallagher KP. Protection of the neonatal myocardium during hypothermic ischemia. Effect of cardioplegia on left ventricular function in the rabbit. J Thorac Cardiovasc Surg 1987; 94: 115–23.

    PubMed  CAS  Google Scholar 

  155. Corno AF, Bethencourt DM, Laks H et al. Myocardial protection in the neonatal heart. A comparison of topical hypothermia and crystalloid and blood cardioplegic solutions. J Thorac Cardiovasc Surg 1987: 93: 163–72.

    PubMed  CAS  Google Scholar 

  156. Sawa Y, Matsuda H, Shimazaki Y et al. Ultrastructural assessment of the infant myocardium receiving crystalloid cardioplegia. Circulation 1987; 76 (Suppl V): V-141-V-145.

    CAS  Google Scholar 

  157. Sawa Y, Matsuda H, Shimazaki Y et al. Experimental and clinical study of crystalloid cardioplegic solution in neonatal period and early infancy. Effects of calcium and prostacyclin analogue. Circulation 1988; 78 (Suppl III): III-191-III-197.

    CAS  Google Scholar 

  158. Avkiran M. Hearse DJ. Protection of the myocardium during global ischemia. Is crystalloid cardioplegia effective in the immature myocardium? J Thorac Cardiovasc Surg 1989; 97: 220–8.

    PubMed  CAS  Google Scholar 

  159. Riva E. Hearse DJ. Calcium and cardioplegia in neonates: dose-response and time-response studies in rats. Am J Physiol 1991; 261: H1609–H1616.

    PubMed  CAS  Google Scholar 

  160. Baker JE, Boerboom LE, Olinger GN. Age-related changes in the ability of hypothermia and cardioplegia to protect ischemic rabbit myocardium. J Thorac Cardiovasc Surg 1988: 96: 717–724.

    PubMed  CAS  Google Scholar 

  161. Baker JE, Boerboom LE, Olinger GN. Cardioplegia-induced damage to ischemic immature myocardium is independent of oxygen availability. Ann Thorac Surg 1990; 50: 934–9.

    Article  PubMed  CAS  Google Scholar 

  162. Baker EJ, Olinger GN, Baker JE. Calcium content of St Thomas’ II cardioplegic solution damages ischemic immature myocardium. Ann Thorac Surg 1991; 52: 993–9.

    Article  PubMed  Google Scholar 

  163. Murashita T. Hearse DJ. Temperature-response studies of the detrimental effects of multi-dose versus single-dose cardioplegic solution in the rabbit heart. J Thorac Cardiovasc Surg 1991: 102: 673–83.

    PubMed  CAS  Google Scholar 

  164. Menasché P, Grousset C, de Boccard G et al. Protective effect of an asanguineous reperfusion solution on myocardial performance following cardioplegic arrest. Ann Thorac Surg 1984: 37: 222–8.

    Article  PubMed  Google Scholar 

  165. Allen BS, Okamoto F, Buckberg GD et al. Studies of controlled reperfusion after ischemia. IX. Reperfusate composition: benefits of marked hypocalcemia and diltiazem on regional recovery. J Thorac Cardiovasc Surg 1986; 92: 564–72.

    PubMed  CAS  Google Scholar 

  166. Menasché P, Dunica S, Kural S et al. An asanguineous reperfusion solution. An effective adjunct to cardioplegic protection in high risk valve operations. J Thorac Cardiovasc Surg 1984; 88: 278–86.

    PubMed  Google Scholar 

  167. Chambers DJ, Harvey DM, Venn DJ et al. Transient initial reperfusion with oxygenated cardioplegia: contrasting effects of St Thomas’ Hospital solutions 1 and 2. Eur Heart J 1992: 13 (Abstract Suppl): P783.

    Google Scholar 

  168. Harvey DM, Venn GE, Chambers DJ. Transient initial reperfusion with oxygenated cardioplegia: contrasting effects of substrate addition to St Thomas’ solutions 1 and 2. J Mol Cell Cardiol 1992: 24 (Suppl V): 516.

    Google Scholar 

  169. Smith PK. Buhrman WC. Levett JM et al. Supraventricular conduction abnormalities following cardiac operations. A complication of inadequate atrial preservation. J Thorac Cardiovasc Surg 1983; 85: 105–15.

    PubMed  CAS  Google Scholar 

  170. Ferguson TBJ, Smith PK, Lofland GK et al. The effects of cardioplegic potassium concentration and myocardial temperature on electrical activity in the heart during elective cardioplegic arrest. J Thorac Cardiovasc Surg 1986; 92: 755–65.

    PubMed  Google Scholar 

  171. Ferguson TBJ, Smith LS, Smith PK et al. Electrical activity in the heart during hyperkalemic hypothermic cardioplegic arrest: site of origin and relationship to specialized conduction tissue. Ann Thorac Surg 1987; 43: 373–9.

    Article  PubMed  Google Scholar 

  172. Gundry SR, Sequiera A, Coughlin TR et al. Postoperative conduction disturbances: a comparison of blood and crystalloid cardioplegia. Ann Thorac Surg 1989: 47: 384–90.

    Article  PubMed  CAS  Google Scholar 

  173. Kay HR, Levine FH, Fallon JT et al. Effect of cross-clamp time, temperature. and cardioplegic agents on myocardial function after induced arrest. J Thorac Cardiovasc Surg 1978; 76: 590–603.

    PubMed  CAS  Google Scholar 

  174. Ganote CE, Worstell J, Iannotti JP et al. Cellular swelling and irreversible myocardial injury: effects of polyethylene glycol and mannitol in perfused rat heart. Am J Pathol 1977; 88: 95–118.

    PubMed  CAS  Google Scholar 

  175. Foglia RP, Steed DL, Follette DM et al. Iatrogenic myocardial edema with potassium cardioplegia. J Thorac Cardiovasc Surg 1977; 78: 217–22.

    Google Scholar 

  176. Drewnowska K, Clemo HF, Baumgarten CM. Prevention of myocardial intracellular edema induced by St Thomas’ Hospital cardioplegic solution. J Mol Cell Cardiol 1991; 23: 1215–21.

    Article  PubMed  CAS  Google Scholar 

  177. Darracott-Cankovic S, Braimbridge MV, Kyosola K et al. Use of microscopic interferometry for measuring changes in water content of small samples of tissue. Cell Biochem Funct 1984; 2: 57–61.

    Article  PubMed  CAS  Google Scholar 

  178. Carpentier S, Murawsky M, Carpentier A. Cytotoxicity of cardioplegic solutions: evaluation by tissue culture. Circulation 1981: 64 (Suppl II): II-90-II-95.

    CAS  Google Scholar 

  179. Mattila S. Harjula A, Mattila I et al. Coronary endothelium and cardioplegic solutions. Ann Chirurg Gynaecol 1987; 76: 46–50.

    CAS  Google Scholar 

  180. Saldanha C, Hearse DJ. Coronary vascular responsiveness to 5—hydroxytryptamine before and after infusion of hyperkalemic crystalloid cardioplegic solution in the rat heart. Possible evidence of endothelial damage. 1 Thorac Cardiovasc Surg 1989; 98: 783–7.

    CAS  Google Scholar 

  181. Chiavarelli R, Macchiarelli G, Familiari G et al. Ultrastructural changes of coronary artery endothelium induced by cardioplegic solutions. Thorac Cardiovasc Surgeon 1989: 37: 151–7.

    Article  CAS  Google Scholar 

  182. von Oppell UO, Pfeiffer S, Preiss P et al. Endothelial cell toxicity of solid-organ preservation solutions. Ann Thorac Surg 1990; 50: 902–10.

    Article  Google Scholar 

  183. Molina JE, Galliani CA, Einzig S et al. Physical and mechanical effects of cardioplegic injection on flow distribution and myocardial damage in hearts with normal coronary arteries. J Thorac Cardiovasc Surg 1989; 97: 870–7.

    PubMed  CAS  Google Scholar 

  184. Keller MW, Geddes L, Spotnitz W et al. Microcirculatory dysfunction following perfusion with hyperkalemic, hypothermic. cardioplegic solutions and blood reperfusion. Effects of adenosine. Circulation 1991; 84: 2485–94.

    Article  PubMed  CAS  Google Scholar 

  185. Robinson LA, Braimbridge MV, Hearse DJ. The potential hazard of particulate contamination of cardioplegic solutions. J Thorac Cardiovasc Surg 1984; 87: 48–58.

    PubMed  CAS  Google Scholar 

  186. Hearse DJ, Sonmez B, Saldanha C et al. Particle-induced coronary vasoconstriction in the rat heart: pharmacological investigation of underlying mechanisms. Thorac Cardiovasc Surgeon 1986: 34: 316–25.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chambers, D.J., Braimbridge, M.V. (1993). Cardioplegia with an extracellular formulation. In: Piper, H.M., Preusse, C.J. (eds) Ischemia-reperfusion in cardiac surgery. Developments in Cardiovascular Medicine, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1713-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1713-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4750-0

  • Online ISBN: 978-94-011-1713-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics