Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 142))

  • 110 Accesses

Abstract

Preservation of myocardial integrity and function during cardioplegic arrest has improved steadily in recent years with the widespread use of selective cardiac hypothermia and potassium containing cardioplegia [17]. Most operations involving open-heart surgery can now be completed with a cardioplegic arrest of less than 120 minutes duration. Nevertheless, in a number of patients the heart recovering from the surgical trauma and the cardioplegic arrest cannot provide a sufficient peripheral circulation in the immediate postoperative period, although coronary blood flow is restored, and there is no myocardial necrosis. This reversible impairment of postoperative ventricular function represents a form of global myocardial ‘stunning’ [8]. With the restoration of coronary blood flow, there is a rapid recovery of metabolic parameters. Creatine phosphate is repleted [9,10], lactate production is reversed to consumption [11], and tissue pH is normalized [9]. Changes in myocardial water content occur only to a minor extent during cardioplegia and tissue edema resolves quickly upon reperfusion [12]. Changes of the ST-segment and cardiac rhythm [1315] are normalized within minutes after reperfusion. Thus, reversibly depressed ventricular function following cardioplegic arrest has no metabolic, electrophysiological or structural correlate and must therefore be assessed as a separate entity. The adequate assessment of cardiac function and its management during the critical postoperative period is essential to the outcome of the operative procedure and the prognosis of patients undergoing cardiac surgery [16,17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Melrose DG, Dreyer B, Bentall HH. Elective cardiac arrest: Preliminary communication. Lancet 1955; 2: 21–2.

    Article  Google Scholar 

  2. Bretschneider HJ. Überlebenszeit und Wiederbelebungszeit des Herzens bei Normo-und Hypothermie. Verh Dtsch Ges Kreislaufforsch 1964; 30: 11–34.

    PubMed  CAS  Google Scholar 

  3. Hearse DJ, Stewart DA. Braimbridge MV. Cellular protection during myocardial ischemia. The development and characterization of a procedure for the induction of reversible ischemic arrest. Circulation 1976; 54: 193–202.

    Article  PubMed  CAS  Google Scholar 

  4. Follette DM, Mulder DG, Maloney; JV Jr. et al. Advantages of blood cardioplegia over continuous coronary perfusion or intermittent ischemia. J Thorac Cardiovasc Surg 1978; 76: 604–19.

    PubMed  CAS  Google Scholar 

  5. Engelman RM, Rousou JM, Vertrees RA et al. Safety of prolonged ischemic arrest using hypothermic cardioplegia. J Thorac Cardiovasc Surg 1980; 79: 705–13.

    PubMed  CAS  Google Scholar 

  6. Floyd RD, Sabiston DC, Lee KL et al. The effect of duration of hypothermic cardioplegia on ventricular function. J Thorac Cardiovasc Surg 1983; 85: 606–11.

    PubMed  CAS  Google Scholar 

  7. Silverman NA, Wright R, Levitsky S et al. Efficacy of crystalloid cardioplegic solutions in patients undergoing myocardial revascularization. ‘Thorac Cardiovasc Surg 1985: 89: 905.

    Google Scholar 

  8. Bolli R, Hartley CJ, Rabinovitz RS et al. Clinical relevance of myocardial “stunning”. Cardiovasc Drugs Ther 1991; 5: 877–90.

    Article  PubMed  CAS  Google Scholar 

  9. Guth BD, Martin JF, Heusch G et al. Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion. J Am Coll Cardiol 1987; 10: 673–81.

    Article  PubMed  CAS  Google Scholar 

  10. Ambrosio G, Jacobus WE, Bergmann CA et al. Preserved high energy phosphate metabolic reserve in globally stunned hearts despite reduction of basal ATP content and contractility. J Mol Cell Cardiol 1987: 19: 953–64.

    Article  PubMed  CAS  Google Scholar 

  11. Guth BD, Wisneski JA, Neese R et al. Myocardial lactate release during ischemia in swine. Relation to regional blood flow. Circulation 1990; 81: 1948–958.

    Article  PubMed  CAS  Google Scholar 

  12. Goto R, Tearle H, Steward DJ et al. Myocardial edema and ventricular function after cardioplegia with added mannitol. Can J Anaesth 1991; 38: 7–14.

    Article  PubMed  CAS  Google Scholar 

  13. Hearse DJ. The protection of the ischemic myocardium: Surgical success vs. clinical failure? Prog Cardiovasc Dis 1988; 30: 381–402.

    Article  PubMed  CAS  Google Scholar 

  14. Bolli R, Hartley CJ, Chelly JE et al. An accurate, nontraumatic ultrasonic method to monitor myocardial wall thickening in patients undergoing cardiac surgery. J Am Coll Cardiol 1990: 15: 1055–65.

    Article  PubMed  CAS  Google Scholar 

  15. Codd JE, Barner HB, Pennington DG et al. Intraoperative myocardial protection: a comparison of blood and asanguineous cardioplegia. Ann Thorac Surg 1985; 39: 125–33.

    Article  PubMed  CAS  Google Scholar 

  16. Rogers WJ, Coggin CJ, Gersh BJ et al. CASS Investigators. Ten-year follow-up of quality of life in patients randomized to receive medical therapy or coronary artery bypass graft surgery. Circulation 1990; 82: 1647–58.

    Article  PubMed  CAS  Google Scholar 

  17. Chaitman BR, Ryan TJ, Kronmal RA et al. CASS Investigators. Coronary artery surgery study (CASS): comparability of 10 year survival in randomized and randomizable patients. J Am Coll Cardiol 1990; 16: 1071–8.

    Article  PubMed  CAS  Google Scholar 

  18. Sagawa, K, Sunagawa, K, Maughan WL. Ventricular end-systolic pressure-volume relations. In Levine HJ, Gaasch WH (eds): The Ventricle. Boston: Martinus Nijhoff 1985; 79–82.

    Chapter  Google Scholar 

  19. Waldman LK, Fung YC, Covell JW: Transmural myocardial deformation in the canine left ventricle. Circ Res 1985: 57: 152–63.

    Article  PubMed  CAS  Google Scholar 

  20. Trautwein W, Gauer OH, Koepchen HP et al. In Gauer OH (ed): Physiologic des Menschen. Munchen Berlin Wien: Urban & Schwarzenberg 1972.

    Google Scholar 

  21. Bretschneider HJ, Hellige G. Pathophysiologie der Ventrikelkontraktion-Kontraktilitat, Inotropie, Suffiziensgrad und Arbeitsökonomie des Herzens. Verh Dtsch Ges Kreislaufforsch 1976; 42: 14–30.

    Article  PubMed  CAS  Google Scholar 

  22. Frank O. Zur Dynamik des Herz.muskels. Z Biol 1895; 32: 370–447.

    Google Scholar 

  23. Alexander J, Burkhoff D, Schipke J et al. Influence of mean pressure on aortic impedance and reflections in the systemic arterial system. Am J Physiol 1989; 257: H969–H978.

    PubMed  Google Scholar 

  24. Sonnenblick EH. Force-velocity relations in mammalian heart muscle. Am J Physiol 1962; 202: 931–39.

    PubMed  CAS  Google Scholar 

  25. Schipke JD, Alexander J Jr, Harasawa Y et al. Interrelation between end-systolic pressure-volume and pressure-wall thickness relations. Am J Physiol 1988; 255: H679–H684.

    PubMed  CAS  Google Scholar 

  26. Raff WK, Kosche F, Lochner W. Herzfrequenz und extravasale Komponente des Coronarwiderstandes. Pfiuegers Arch 1971; 323: 241–9.

    Article  CAS  Google Scholar 

  27. Covell JW, Ross J Jr, Taylor R et al. Effects of increasing frequency of contraction on the force velocity relation of left ventricle. Cardiovasc Res 1967; 1: 2–8.

    Article  PubMed  CAS  Google Scholar 

  28. Mahler F, Yoran C, Ross J Jr. Inotropic effects of tachycardia and poststimulation potentiation in the conscious dog. Am J Physiol 1974; 227: 569–75.

    PubMed  CAS  Google Scholar 

  29. Ross J Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis 1976; 18: 255–64.

    Article  PubMed  Google Scholar 

  30. Lee JD, Tajimi T, Patritti J et al. Preload reserve and mechanisms of afterload mismatch in normal conscious dogs. Am J Physiol 1986; 250: H464–H473.

    PubMed  CAS  Google Scholar 

  31. Jacob R, Gulch RW. Functional significance of ventricular dilatation. Reconsideration of Linzbach’s concept of chronic heart failure. Basic Res Cardiol 1988; 83: 461–75.

    Article  PubMed  CAS  Google Scholar 

  32. Sasayama S, Ross J Jr, Franklin D et al. Adaptations of left ventricle to chronic pressure overload. Circ Res 1976; 38; 172–8.

    Article  PubMed  CAS  Google Scholar 

  33. Linzbach AL Heart failure from the point of view of quantitative anatomy. Am J Cardioi 1960; 5: 370–82.

    Article  CAS  Google Scholar 

  34. Grossman W, McLaurin LP, Moos SP et al. Wall thickness and diastolic properties of the left ventricle. Circulation 1974; 49: 129–35.

    Article  PubMed  CAS  Google Scholar 

  35. Nikolic SD, Yellin EL, Dahm M et al. Relationship between diastolic shape (eccentricity) and passive elastic properties in canine left ventricle. Am J Physiol 1990; 259: H457–H463.

    PubMed  CAS  Google Scholar 

  36. Burkhoff D, Yue DT, Franz MR et al. Quantitative comparison of the force-interval relationships of the canine right and left ventricles. Circ Res 1984; 54: 468–73.

    Article  PubMed  CAS  Google Scholar 

  37. Feneley MP, Olsen CO, Glower DD et al. Effect of acutely increased right ventricular afterload on work output from the left ventricle in conscious dogs. Systolic ventricular interaction. Circ Res 1989; 65: 135–45.

    Article  PubMed  CAS  Google Scholar 

  38. Peters J, Fraser C, Stuart RS er al. Negative intrathoracic pressure decreases independently left ventricular filling and emptying. Am J Physiol 1989; 257: H120–H131.

    PubMed  CAS  Google Scholar 

  39. Brutsaert DL: Nonuniformity: a physiologic modulator of contraction and relaxation of normal heart. J Am Coll Cardiol 1987; 9: 341–8.

    Article  PubMed  CAS  Google Scholar 

  40. Antzelevitch C, Sicouri S, Litovskv SH et al. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res 1991; 69: 1427–49.

    Article  PubMed  CAS  Google Scholar 

  41. Heusch G, Guth BD, Widmann T et al. Ischemic myocardial dysfunction assessed by temporal Fourier transform of regional myocardial wall thickening. Am Heart J 1987; 113: 116–24.

    Article  PubMed  CAS  Google Scholar 

  42. Ehring T, Heusch G. Left ventricular asynchrony: an indicator of regional myocardial dysfunction. Am Heart J 1990; 120: 1047–57.

    Article  PubMed  CAS  Google Scholar 

  43. Lew WYW, Chen Z, Guth BD et al. Mechanisms of augmented segment shortening in nonischemic areas during acute ischemia of the canine left ventricle. Circ Res 1985; 56: 351–8.

    Article  PubMed  CAS  Google Scholar 

  44. Guth BD, Schulz R, Heusch G. Evaluation of parameters for the assessment of regional myocardial contractile function during asynchronous left ventricular contraction. Basic Res Cardiol 1990; 85: 550–62.

    Article  PubMed  CAS  Google Scholar 

  45. Ganz W, Donoso R, Marcus HS et al. A new technique for measurements of cardiac output by thermodilution in man. Am J Cardiol 1971; 27: 392–9.

    Article  PubMed  CAS  Google Scholar 

  46. Van Grondelle A, Ditchey RV, Groves BM et al. Thermodilution method overestimates low cardiac output in humans. Am J Physiol 1983; 245: H690–H697.

    PubMed  Google Scholar 

  47. Li JK, Van Brummelen GW, Nordergraaf A. Fluid-filled blood pressure measurement system. J Appl Physiol 1976; 40: 839–43.

    PubMed  CAS  Google Scholar 

  48. Wood EH, Lensen IR, Warner HR et al. Measurements of pressure in man by cardiac catheterization. Circ Res 1954; 2: 294–8.

    Article  PubMed  CAS  Google Scholar 

  49. Markiewicz W, Sechtem U, Kirby R et al. Measurements of ventricular volumes in the dog by magnetic resonance imaging (MRI). J Am Coll Cardiol 1987; 10: 170–6.

    Article  PubMed  CAS  Google Scholar 

  50. Gaudio C, Tanzilli G, Mazzarotto P et al. Comparison of left ventricular ejection fraction by magnetic resonance imaging and radionuclide ventriculography in idiopathic dilated cardiomyopathy. Am J Cardiol 1991; 67: 411–5.

    Article  PubMed  CAS  Google Scholar 

  51. Benjelloun H, Cranney GB, Kirk KA et al. Interstudy reproducibility of biplane tine nuclear magnetic resonance measurements of left ventricular function. Am J Cardiol 1991; 67: 1413–20.

    Article  PubMed  CAS  Google Scholar 

  52. Lipton MJ, Higgins CB, Farmer D et al. Cardiac imaging with a high-speed cine-CT scanner: Preliminary results. Radiology 1983; 152: 579–85.

    Google Scholar 

  53. Sinak, LJ, Ritman EL. Dynamic spatial reconstructor. In Sinak LJ, Ritman Lj (eds): CT of the Heart and Great Vessels. Mt. Kisco, NY: Futura Publishing Co 1983; 61–73.

    Google Scholar 

  54. Lessick J, Sideman S, Azhari H et al. Regional three-dimensional geometry and function of left ventricles with fibrous aneurysms. A cine-computed tomography study. Circulation 1991; 84: 1072–86.

    Article  PubMed  CAS  Google Scholar 

  55. Osbakken M, Yuschok T. Evaluation of ventricular function with gated cardiac magnetic resonance imaging. Cathet Cardiovasc Diagn 1986; 12: 156–62.

    PubMed  CAS  Google Scholar 

  56. Boltwood CM Jr, Appleyard RF, Glantz SA. Left ventricular volume measurement by conductance catheter in intact dogs. Parallel conductance volume depends on left ventricular size. Circulation 1989; 80: 1360–77.

    Article  PubMed  Google Scholar 

  57. Rankin JS. McHale PA, Arentzen CE et al. The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circ Res 1976; 39: 304–13.

    Article  PubMed  CAS  Google Scholar 

  58. Tobinick E, Schelbert HR, Henning H et al. Right ventricular ejection fraction in patients with acute anterior and inferior myocardial infarction assessed by radionuclide angiography. Circulation 1978; 57: 1078–84.

    Article  PubMed  CAS  Google Scholar 

  59. Dodge HT, Sheehan FH. Quantitative contrast angiography for assessment of ventricular performance in heart disease. J Am Coll Cardiol 1983; 1: 73–8.

    Article  PubMed  CAS  Google Scholar 

  60. Kronenberg MW, Price RR, Smith CW et al. Evaluation of left ventricular performance using digital subtraction angiography. Am J Cardiol 1983; 51: 837–45.

    Article  PubMed  CAS  Google Scholar 

  61. Mitchell JH, Wildenthal K, Mullins CB. Geometrical studies of the left ventricle utilizing biplane cinefluorography. Fed Proc 1969; 28: 1334–43.

    PubMed  CAS  Google Scholar 

  62. Shoukas AA, Sagawa K, Maughan WL. Chronic implantation of radiopaque beads on endocardium, midwall, and epicardium. Am J Physiol 1981; 241: H104–H107.

    PubMed  CAS  Google Scholar 

  63. Maughan WL, Jenkins RE, Ebert WL. Multiple marker cineventriculogrammetry: a new technique for simultaneous measurement of regional wall motion and overall geometry in animals. In Sigwart U, Heintzen PH (eds): Ventricular Wall Motion. New York: ThiemeStratton, 1984.

    Google Scholar 

  64. Bishop VS, Horwitz LD, Stone HL et al. Left ventricular internal diameter and cardiac function in conscious dogs. J Appl Physiol 1969; 27: 619–23.

    PubMed  CAS  Google Scholar 

  65. Weintraub WS, Hattori S, Agarwal JB et al. The relationship between myocardial blood flow and contraction by myocardial layer in the canine left ventricle during ischemia. Circ Res 1981: 48: 430–8.

    Article  PubMed  CAS  Google Scholar 

  66. Gallagher KP, Kumada T, Koziol JA et al. Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation 1980: 62: 1266–74.

    Article  PubMed  CAS  Google Scholar 

  67. Bugge-Asperheim B, Leraand S, Kiil F. Local dimensional changes of the myocardium measured by ultrasonic technique. Scand J Clin Lab Invest 1969; 24: 361–71.

    Article  PubMed  CAS  Google Scholar 

  68. Deutsch HJ, Curtius JM, Leischik R et al. Diagnostic value of transesophageal echocardiography in cardiac surgery. Thorac Cardiovasc Surg 1991; 39: 199–204.

    Article  PubMed  CAS  Google Scholar 

  69. Seward JB, Khandheria MK, Oh JK et al. Transesophageal echocardiography: technique. anatomic, correlations, implementation. and clinical application. Mayo Clin Proc 1988: 63: 649–80.

    PubMed  CAS  Google Scholar 

  70. Luisada AA, Singhal A, Portaluppi F. Assessment of left ventricular function by noninvasive methods. Adv Cardiol 1985; 32: 111–7.

    PubMed  CAS  Google Scholar 

  71. Tortoledo FA, Quinones MA, Fernandez GC et al. Quantification of left ventricular volumes by two-dimensional echocardiography: A simplified and accurate approach. Circulation 1983; 67: 579–86.

    Article  PubMed  CAS  Google Scholar 

  72. Kronenberg MW, Parrish MD, Jenkins DW Jr et al. Accuracy of radionuclide ventriculography for estimation of left ventricular volume changes and endsystolic pressure volume relations. J Am Coll Cardiol 1985: 6: 1064–72.

    Article  PubMed  CAS  Google Scholar 

  73. Faris IB, Iannos J, Jamieson G et al. The circulatory effects of acute hypervolemia and hemodilution in conscious rabbits. Cire Res 1981: 48: 825–34.

    Article  CAS  Google Scholar 

  74. Stamm RB, Carabello BA, Mayers DL et al. Two-dimensional echocardiographic measurement of left ventricular ejection fraction: Prospective analysis of what constitutes an adequate determination. Am Heart J 1982; 104: 136–41.

    Article  PubMed  CAS  Google Scholar 

  75. Quinones MA, Waggoner AD, Reduto LA et al. A new simplified and accurate method for determining ejection fraction with two-dimensional echocardiography. Circulation 1981; 64: 744–8.

    Article  PubMed  CAS  Google Scholar 

  76. Mahler F, Ross J Jr. O’Rourke RA er al. Effects of changes in preload. afterload and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog. Am J Cardiol 1975: 35: 626–34.

    Article  PubMed  CAS  Google Scholar 

  77. Furnival CM, Linden RJ, Snow HM. Inotropic changes in the left ventricle: The effect of changes in heart rate. aortic pressure and end-diastolic pressure. J Physiol 1970; 211: 359–87

    PubMed  CAS  Google Scholar 

  78. Morgenstern C, Goebel H, Lochner W. Die Beurteilung der Kontraktilitat des Herzens. Dtsch Med Wschr 1972; 41: 1563–8.

    Article  Google Scholar 

  79. Davidson DM, Covell JW, Malloch CI et al, Factors influencing indices of left ventricular contractility in the conscious dog. Cardiovasc Res 1974; 8: 299–312.

    Article  PubMed  CAS  Google Scholar 

  80. Mason DT, Braunwald E, Covell JW et al. Assessment of cardiac contractility. The relation between the rate of pressure rise and ventricular pressure during isovolumic systole. Circulation 1971: 44: 47–58.

    Article  PubMed  CAS  Google Scholar 

  81. Mehmel H, Krayenbuehl HP, Rutishauser W. Peak measured velocity of shortening in the canine left ventricle. J Appl Physiol 1970; 29: 637–45.

    PubMed  CAS  Google Scholar 

  82. Peterson KL, Sklovan D, Ludbrook P et al. Comparison of isovolumic and ejection phase indices of myocardial performance in man. Circulation 1974; 49: 1088–92.

    Article  PubMed  CAS  Google Scholar 

  83. Hugenholtz PG, Ellison RC, Urschel CW et al. Myocardial force-velocity relationships in clinical heart disease. Circulation 1970; 41: 191–202.

    Article  PubMed  CAS  Google Scholar 

  84. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 1974; 35: 117–26.

    Article  PubMed  CAS  Google Scholar 

  85. McKay RG, Aroesty JM, Heller GV et al. Assessment of the end-systolic pressure-volume relationship in human beings with the use of a time-varying elastance model. Circulation 1986; 74: 97–104.

    Article  Google Scholar 

  86. Mehmel HC, Stockins B, Ruffmann K et al. The linearity of the end-systolic pressure-volume relationship in man and its sensitivity for assessment of left ventricular function. Circulation 1981: 63: 1216–22.

    Article  PubMed  CAS  Google Scholar 

  87. Heyndrickx GR. Boettcher DH, Vatner SR Effects of angiotensin, vasopressin, and methoxamine on cardiac function and blood flow distribution in conscious dogs. Am J Physiol 1976: 231: 1579–87.

    CAS  Google Scholar 

  88. Harpole DH, Rankin JS, Wolfe WG et al. Assessment of left ventricular functional preservation during isolated cardiac valve operations. Circulation 1989: 80 (Suppl III):III-1-III-9.

    CAS  Google Scholar 

  89. Kass DA, Maughan WL, Guo ZM et al. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 1987: 76: 1422–36

    Article  PubMed  CAS  Google Scholar 

  90. Freeman GL, O’Rourke RA. Afterload dependent shifts of end-systolic pressure-volume relation in closed chest dogs. Circulation 1988: 78 (Suppl II): II-69 (Abstr.).

    Google Scholar 

  91. Glower DD, Spratt JA, Snow ND et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 1985: 71: 994–1009.

    Article  PubMed  CAS  Google Scholar 

  92. Kass DA, Maughan WL. From “Emax” to pressure-volume relations: a broader view. Circulation 1988: 77: 1203–12

    Article  PubMed  CAS  Google Scholar 

  93. Aversano T, Maughan WL, Hunter WC et al. End-systolic measures of regional ventricular performance. Circulation 1986; 73: 938–50.

    Article  PubMed  CAS  Google Scholar 

  94. Krukenkamp IB, Silverman NA, Illes RW et al. Assessment of the intrinsic contractile state within an area of myocardium. J Thorac Cardiovasc Surg 1989; 98: 592–600.

    PubMed  CAS  Google Scholar 

  95. Brutsaert DL, Rademakers FE, Sys SC et al. Analysis of relaxation in the evaluation of ventricular function of the heart. Prog Cardiovasc Dis 1985: 28: 143–63

    Article  PubMed  CAS  Google Scholar 

  96. Lew WYW, Rasmussen CM. Influence of nonuniformity on rate of left ventricular pressure fall in the dog. Am J Physiol 1989; 256: H222–H232.

    PubMed  CAS  Google Scholar 

  97. Ehring T, Schulz R. Schipke JD er al. Diastolic dysfunction of stunned myocardium. Am J Cardiovasc Pathol 1992: 4. 358–66.

    Google Scholar 

  98. Ishida Y, Meisner JS, Tsujioka K et al. Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation 1986: 74: 187–96

    Article  PubMed  CAS  Google Scholar 

  99. Grover FL, Fewel JG, Schrank KP et al. Effect of various periods of cold potassium cardioplegic arrest upon myocardial contractility and metabolism. J Surg Res 1980: 28: 328–37.

    Article  PubMed  CAS  Google Scholar 

  100. Goldstein JP, Salter DR, Murphy CE et al. The efficacy of blood versus crystalloid coronary sinus cardioplegia during global myocardial ischemia. Circulation 1986; 74 (Suppl III): III-99-III-104

    CAS  Google Scholar 

  101. Tabayashi K, McKeown PP, Miyamoto M et al. Ischemic myocardial protection. Comparison of nonoxygenated crystalloid. oxygenated crystalloid, and oxygenated fluorocarbon cardioplegic solutions. J Thorac Cardiovasc Surg 1988: 95: 239–46.

    PubMed  CAS  Google Scholar 

  102. Coetzee A, Roussouw G, Fourie P et al. Preservation of myocardial function and biochemistry after blood and oxygenated crystalloid cardioplegia during cardiac arrest. Ann Thorac Surg 1990; 50: 230–7.

    Article  PubMed  CAS  Google Scholar 

  103. Illes RW, Silverman NA, Krukenkamp IB et al. The efficacy of blood cardioplegia is not due to oxygen delivery. J Thorac Cardiovasc Surg 1989: 98: 1051–6

    PubMed  CAS  Google Scholar 

  104. Roberts AJ, Spies SM, Meyers SN et al. Early and long-term improvement in left ventricular performance following coronary bypass surgery. Surgery 1980; 88: 467–75.

    PubMed  CAS  Google Scholar 

  105. Phillips HR, Carter JE, Okada RD et al. Serial changes in left ventricular ejection fraction in the early hours after aortocoronary bypass grafting. Chest 1983: 83: 28–34.

    Article  PubMed  CAS  Google Scholar 

  106. Breisblatt WM, Stein KL, Wolfe O et al. Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass surgery. J Am Coll Cardiol 1990: 15: 1261–9.

    Article  PubMed  CAS  Google Scholar 

  107. Kent KM, Borer JS, Green MV et al. Effects of coronary artery bypass on global and regional left ventricular function during exercise. N Engl.1 Med 1978: 298: 1434–89

    Article  CAS  Google Scholar 

  108. Rubenson DS, Tucker CR, London E er al. Two-dimensional echocardioeraphic analysis of segmental left ventricular wall motion before and after coronary artery bypass surgery. Circulation 1982; 66: 1025–33.

    Article  PubMed  CAS  Google Scholar 

  109. Brundage BH, Maissie BM, Botvinick EL. Improved regional ventricular function after successful surgical revascularization. J Am Coll Cardiol 1984; 3: 902–8.

    Article  PubMed  CAS  Google Scholar 

  110. Rankin JS, Newman GE, Muhlbaier LH et al. The effects of coronary revasculatization on left ventricular function in ischemic heart disease. J Thorac Cardiovasc Surg 1985: 90: 818–32.

    PubMed  CAS  Google Scholar 

  111. Reduto LA, Lawrie GM, Reid JW et al. Sequential postoperative assessment of left ventricular performance with gated cardiac blood pool imaging following aortocoronary bypass surgery. Am Heart J 1981; 101: 59–66.

    Article  PubMed  CAS  Google Scholar 

  112. Fremes SE, Christakis GT, Weisel RD et al. A clinical trial of blood and crystalloid cardioplegia. J Thorac Cardiovasc Surg 1984; 88: 726–41.

    PubMed  CAS  Google Scholar 

  113. Fremes SE, Weisel RD. Mickle DAG et al. Myocardial metabolism and ventricular function following cold potassium cardioplegia. J Thorac Cardiovasc Surg 1985; 89: 531–46.

    PubMed  CAS  Google Scholar 

  114. Mullen JC, Fremes SE, Weisel RD et al. Right ventricular function: a comparison between blood and crystalloid cardioplegia. Ann Thorac Surg 1987; 43: 17–24.

    Article  PubMed  CAS  Google Scholar 

  115. Christakis GT, Fremes SE, Weisel RD et al. Right ventricular dysfunction following cold potassium cardioplegia. J Thorac Cardiovasc Surg 1985; 90: 243–50.

    PubMed  CAS  Google Scholar 

  116. Christakis GT, Weisel RD, Mickle DAG et al. Right ventricular function and metabolism. Circulation 1990; 82 (Suppl IV): IV-332-IV-340.

    CAS  Google Scholar 

  117. Rabinovich MA, Elstein J, Chiu RC et al. Selective right ventricular dysfunction after coronary artery bypass grafting (brief communication). J Thorac Cardiovasc Surg 1983: 86: 444.

    Google Scholar 

  118. Schubert T, Vetter H, Owen P et al. Adenosine cardioplegia. J Thorac Cardiovasc Surg 1989; 98: 1057–65.

    PubMed  CAS  Google Scholar 

  119. Munfakh NA, Steinberg JB, Titus JS et al. Protection of the hypertrophied myocardium by crystalloid cardioplegia. J Surg Res 1991; 51: 447–56.

    Article  PubMed  CAS  Google Scholar 

  120. Avkiran M, Hearse DJ. Protection of the myocardium during global ischemia. Is crystalloid cardioplegia effective in the immature myocardium? J Thorac Cardiovasc Surg 1989: 97: 220–8.

    PubMed  CAS  Google Scholar 

  121. Menasché P, Grousset C, Gauduel Y et al. A comparative study of free radical scavengers in cardioplegic solutions. J Thorac Cardiovasc Surg 1986; 92: 264–71.

    PubMed  Google Scholar 

  122. Bolling SF, Olszanski DA, Bove EL et al. Enhanced myocardial protection during global ischemia with 5’-nucleotidase inhibitors. J Thorac Cardiovasc Surg 1992; 103: 73–7.

    PubMed  CAS  Google Scholar 

  123. Haan CK, Lazar HL. Rivers S et al. Improved myocardial preservation during cold storage using substrate enhancement. Ann Thorac Surg 1990; 50: 80–5.

    Article  PubMed  CAS  Google Scholar 

  124. Bolling SF, Bies LE, Gallagher KP et al. Enhanced myocardial protection with adenosine. Ann Thorac Surg 1989: 47: 809–15

    Article  PubMed  CAS  Google Scholar 

  125. Bolling SF, Bies LE, Bove EL. Effect of ATP synthesis promoters on postischemic myocardial recovery. J Surg Res 1990; 49: 205–11.

    Article  PubMed  CAS  Google Scholar 

  126. Bolling SF, Bove EL, Gallagher KP. ATP precursor depletion and postischemic myocardial recovery. J Surg Res 1991; 50: 629–33.

    Article  PubMed  CAS  Google Scholar 

  127. Myers CL, Weiss SJ, Kirsh MM et al. Effects of supplementing hypothermic crystalloid cardioplegic solution with catalase. superoxide dismutase, allopurinol, or deferoxamine on functional recovery of globally ischemic and reperfused isolated hearts. J Thorac Cardiovasc Surg 1986: 91: 281–9

    PubMed  CAS  Google Scholar 

  128. Becker BF, Gerlach E. Nachweis multiplier hypoxischer Areale in “normoxisch” perfundierten isolierten Herzen. Z Kardiol 1987; 76 (Suppl I): 72 (Abstr.).

    Google Scholar 

  129. Krukenkamp IB. Silverman NA, Levitsky S. The effect of cardioplegic oxygenation on the correlation between the linearized Frank-Starling relationship and myocardial energetics in the ejecting postischemic heart. Circulation 1987: 76 (Suppl V): V-122-V-128.

    Google Scholar 

  130. Melendez FJ, Gharagozloo F, Sun S-C et al. Effects of diltiazem cardioplegia on global function, segmental contractility. and the area of necrosis after acute coronary artery occlusion and surgical reperfusion. J Thorac Cardiovasc Surg 1988; 95: 613–7.

    PubMed  CAS  Google Scholar 

  131. Greene PS, Cameron DE, Mohlala L et al. Systolic and diastolic left ventricular dysfunction due to mild hyperthermia. Circulation 1989; 80 (Suppl III): 111–44–111–48.

    Google Scholar 

  132. Lundborg RO, Rahimtoola SH, Swan HJC. Halothane administration and left ventricular function in man. Anesth Analg 1967; 46: 377–85.

    Article  PubMed  CAS  Google Scholar 

  133. Reddy PS, Curtiss El, O’Toole JD et al. Cardiac tamponade: Hemodynamic observations in man. Circulation 1977: 48: 265–71.

    Google Scholar 

  134. Kaplan JA, Jones EL. Vasodilator therapy during coronary artery surgery. J Thorac Cardiovasc Surg 1972; 64: 563–7.

    Google Scholar 

  135. Harrison DC, Kerber RE, Alderman EL. Pharmacodynamics and clinical use of cardiovascular drugs after cardiac surgery. Am J Cardiol 1970; 26: 385–92.

    Article  PubMed  CAS  Google Scholar 

  136. Roberts AJ, Niarchos AP, Subramanian VA et al. Systemic hypertension associated with coronary artery bypass surgery. J Thorac Cardiovasc Surg 1977; 74: 846–52.

    PubMed  CAS  Google Scholar 

  137. Wallach R, Karp RB, Reyes JG et al. Pathogenesis of paroxysmal hypertension developing during and after coronary bypass surgery: A study of hemodynamic and humoral factors. Am J Cardiol 1980; 46: 559–65.

    Article  PubMed  CAS  Google Scholar 

  138. Rosenfeldt FL, Rabinov M, Little P et al. The relationship between coronary pressure during reperfusion and myocardial recovery after hypothermic cardioplegia. J Thorac Cardiovasc Surg 1986; 92: 414–24.

    PubMed  CAS  Google Scholar 

  139. Teoh KH, Christakis GT, Weisel RD et al. Accelerated myocardial metabolic recovery with terminal warm blood cardioplegia. J Thorac Cardiovasc Surg 1986; 91: 888–95.

    PubMed  CAS  Google Scholar 

  140. Swain JL, Sabina RL, McHale PA Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol 1982; 242: H818–H826.

    PubMed  CAS  Google Scholar 

  141. Rosenkranz ER, Okamoto F, Buckberg GD et al. Safety of prolonged aortic clamping with blood cardioplegia. J Thorac Cardiovasc Surg 1984; 88: 402–10.

    PubMed  CAS  Google Scholar 

  142. Becker LC, Levine JH, DiPaula AF et al. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 1986; 7: 580–9.

    Article  PubMed  CAS  Google Scholar 

  143. Ehring T, Heusch G. Postextrasystolic potentiation does not distinguish ischaemic from stunned myocardium. Pfluegers Arch 1991; 418: 453–61.

    Article  CAS  Google Scholar 

  144. Bolli R, Zhu W-X, Myers ML et al. Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent deterioration. Am J Cardiol 1985; 56: 964–8.

    Article  PubMed  CAS  Google Scholar 

  145. Heusch G, Schäfer S, Kröger K: Recruitment of inotropic reserve in “stunned” myocardium by the cardiotonic agent AR-L 57. Basic Res Cardiol 1988; 83: 602–10.

    Article  PubMed  CAS  Google Scholar 

  146. Ito BR, Tate H, Kobayashi M et al. Reversibly injured, postischemic canine myocardium retains normal contractile reserve. Circ Res 1987; 61: 834–46.

    Article  PubMed  CAS  Google Scholar 

  147. Schafer S, Linder C, Heusch G. Xamoterol recruits an inotropic reserve in the acutely failing. reperfused canine myocardium without detrimental effects on its subsequent recovery. Naunyn Schmiedeberes Arch Pharmacol 1990; 342: 206–13.

    Article  CAS  Google Scholar 

  148. McDonough KH, Dunn RB, Griggs DM. Transmural changes in porcine and canine hears after circumflex artery occlusion. Am J Physiol 1984; 246: H601–H607.

    Google Scholar 

  149. Chambers DJ, Sakai A, Braimbridge MV et al. Clinical validation of St. Thomas’ Hospital cardioplegic solution No. 2 (Plegisol). Eur J Cardio-thorac Surg 1989: 3: 346–52.

    Article  CAS  Google Scholar 

  150. Mills SA, Hansen K, Vinten-Johansen J et al. Enhanced functional recovery with venting during cardioplegic arrest in chronically damaged hearts. Ann Thorac Surg 1985; 40: 56673.

    Article  Google Scholar 

  151. Singh AK, Corwin RD, Teplitz C et al. Consecutive repair of complex congenital heart disease using hypothermic cardioplegic arrest - Its results and ultrastructural study of the myocardium. Thorac Cardiovasc Surg 1984; 32: 23–6.

    Article  PubMed  CAS  Google Scholar 

  152. Schaper, J. Myocardial uitrastructure in ischemia. In Heusch G (ed): Pathophysiology and Rational Pharmacotherapy of Myocardial Ischemia. Darmstadt, New York: Steinkopff and Springer Verlag 1990: 11–36.

    Chapter  Google Scholar 

  153. Jacob R, Kissling G. Ventricular pressure-volume relations as the primary basis for evaluation of cardiac mechanics. Return to Frank’s diagram. Basic Res Cardiol 1989: 84: 227–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baumgart, D., Schulz, R., Ehring, T., Heusch, G. (1993). Cardioplegia and cardiac function. In: Piper, H.M., Preusse, C.J. (eds) Ischemia-reperfusion in cardiac surgery. Developments in Cardiovascular Medicine, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1713-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1713-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4750-0

  • Online ISBN: 978-94-011-1713-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics