Skip to main content

Biochemistry and physiology of the degradation of nitrilotriacetic acid and other metal complexing agents

  • Chapter
Biochemistry of microbial degradation

Abstract

Synthetic organic, metal-sequestering compounds, such as the aminopoly-carboxylic acids (mainly EDTA and NTA) or the organophosphonic acids HEDP or ATMP, are included in a wide range of different consumer products. Approximately 20% of the total amount produced is used in household detergents to prevent precipitation of bivalent ions from washing suds thereby avoiding deposition of scale on both textile fibers and washing machine parts and to support performance of surfactants (also known as tensides). The rest is used in various other applications such as water treatment, descaling of boilers, in the photographic industry, in agricultural fertilizers, in the dying of textiles, during pulp and paper production, for metal finishing and rubber processing, or in food, pharmaceuticals and cosmetics (McCrary and Howard 1979; Chemical Economics Handbook Program 1983; Egli 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ATMP:

Aminotrimethylphoshonate [N(CH2PO3H2)3]

DTPA:

Diethylenetriaminepentaacetate [(CH2COOH)2NC2H4N(CH2COOH)C2H4N(CH2COOH)2]

DTPMP:

Diethylenetriaminepentamethylphosphonate [(CH2PO3H2)2NC2H4N(CH2PO3H2)C2H4N(CH2PO3H2)2]

EDTA:

Ethylenediaminetetraacetate [(CH2COOH)2NC2H4N(CH2COOH)2]

EDTMP:

Ethylenediaminetetramethylphosphonate [(CH2PO3H2)2NC2H4N(CH2PO3H2)2]

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

HEDP:

Hydroxyethylidenedisphosphonate [HOC(PO3H2)2CH3]

HEDTA:

Hydroxyethylidenedisphosphonate [(CH2COOH)2NC2H4N(CH2COOH)(CH2CH2OH)]

IDA:

iminodiacetate [HN(CH2COOH)2]

IDA-DH:

Imminodiacetate dehydrogenase

NTA:

Nitrilotriacetate [N(CH2COOH)3]

NTA-DH - NTA:

dehydrogenase

NTA-MO - NTA:

monooxygenase

NtrR:

Nitrate reductase

PMS:

phenazine methosulfate

SDS-PAGE:

sodium dodecylsulfate polyacrylamide gel electrophoresis

STP:

pentasodiumtriphosphate

Qn :

Ubiquinone (with n isoprene units in the side chain)

μmax :

maximum specific growth rate (h-1)

References

  • Anderson RL, Bishop WE and Campbell RL (1985) A review of the environmental and mammalian toxicology of nitrilotriacetic acid. CRC Critical Reviews in Toxicology 15: 1–102.

    Article  PubMed  CAS  Google Scholar 

  • Auling G, Busse H-J, Egli T, El-Banna T and Stackebrandt E (1993) Description of the Gramnegative, obligately aerobic, nitritotriacetate (NTA)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov. System. Appl. Microbiol. 16: 104–112.

    Article  Google Scholar 

  • Bally M, Uetz T and Egli T (1992) Physiology of biodegradation of nitrilotriacetate (NTA) by Chelatobacter heintzii. Abstract. 6th International Symposium on Microbial Ecology, Barcelona, Spain.

    Google Scholar 

  • Bergsma J and Konings W (1983) The properties of citrate transport in membrane vesicles. Eur. J. Biochem. 191: 151–156.

    Article  Google Scholar 

  • Bernhardt H (1990) Bewertung von organischen Phosphatersatzstoffen aus ökologischer Sicht. Vom Wasser 74: 159–176.

    CAS  Google Scholar 

  • Bernhardt H, Berth W, Förster U, Hamm A, Janicke W, Kandier J, Kanowski S, Kleiser HH, Koppe P, Opgenorth HJ, Reichert JK and Stehfest H (1984) NTA: Studie über die aquatische Umweltverträglichkeit von Nitrilotriacetat (NTA). Verlag Hans Richarz, Sankt Augustin, Germany.

    Google Scholar 

  • Chemical Economics Handbook Program: Chelating Agents Product Review (1983) Stanford Research Institute International.

    Google Scholar 

  • Cripps RE and Noble AS (1972) The microbial metabolism of nitrilotriacetate. Biochem. J. 130: 31P–32P.

    PubMed  CAS  Google Scholar 

  • Cripps RE and Noble AS (1973) The metabolism of nitrilotriacetate by a Pseudomonad. Biochem. J. 136: 1059–1068.

    PubMed  CAS  Google Scholar 

  • Daughton CG, Cook AM and Alexander M (1979) Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphorus-containig pesticides. Appl. Environ. Microbiol. 37: 605–609.

    PubMed  CAS  Google Scholar 

  • De Vos P and De Ley J (1983) Intra-and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33: 487–509.

    Article  Google Scholar 

  • Diessel P, Stabenow J and Trieselt W (1988) Wirkungsweise von Copolycarboxylaten in Waschmitteln. Tens. Surfact. Deterg. 25: 268–274.

    CAS  Google Scholar 

  • Egli T (1992) Biodegradation of nitrilotriacetic acid. Habilitationsschrift, ETH-Zürich, Switzerland.

    Google Scholar 

  • Egli T (1988) (An)aerobic breakdown of chelating agents used in household detergents. Microbiol. Sci. 5: 36–41.

    PubMed  CAS  Google Scholar 

  • Egli T, Weilenmann H-U, El-Banna T and Auling G (1988) Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst. Appl. Microbiol. 10: 297–305.

    Article  Google Scholar 

  • Egli T, Bally M and Uetz T (1990) Microbial degradation of chelating agents used in detergents with special reference to nitrilotriacetic acid (NTA). Biodegradation 1: 121–132.

    Article  PubMed  CAS  Google Scholar 

  • Firestone MK and Tiedje JM (1975) Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction. Appl. Microbiol. 29: 758–764.

    PubMed  CAS  Google Scholar 

  • Firestone MK, Aust SD and Tiedje JM (1978) A nitrilotriacetic acid monooxygenase with conditional NADH-oxidase activity. Arch. Biochem. Biophys. 190: 617–623.

    Article  PubMed  CAS  Google Scholar 

  • Focht DD and Joseph HA (1971) Bacterial degradation of nitrilotriactic acid. Can. J. Microbiol. 17: 1553–1556.

    Article  PubMed  CAS  Google Scholar 

  • Furlong CE (1987) Osmotic shock-sensitive transport systems. In: FC Neidhardt, JL Ingraham, KB Low, B Magasanik and HE Umbarger (eds) Escherichia coli and Salmonella typhimurium, Vol I (pp 768–796). American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Hamer G, Egli T and Mechsner K (1985) Biological treatment of industrial wastewater: A microbiological basis for process performance. J. Appl. Bacteriol. Symp. Suppl. 127S–140S.

    Google Scholar 

  • Jenal-Wanner U (1991) Anaerobic degradation of nitrilotriacetate in a denitrifying bacterium: purification and characterization of the nitrilotriacetate dehydrogenase / nitrate reductase enzyme complex. PhD thesis, ETH-Nr. 9531. Swiss Federal Institute of Technology, Zürich, Switzerland.

    Google Scholar 

  • Kay WW, Sweet GD, Widenhorn K and Somers JM (1987) Transport of organic acids in prokaryotes. In: BP Rosen and S Silver (eds) Ion Transport in Prokaryotes (pp 269–301). Academic Press, San Diego.

    Google Scholar 

  • Kemmler J (1992) Biochemistry of nitrilotriacetate degradation in the facultatively denitrifying bacterium TE 11. PhD thesis No 9983, Swiss Federal Institute of Technology, Zürich, Switzerland.

    Google Scholar 

  • Kemmler J and Egli T (1990) Nitrilotriacetate-abbauende Mikroorganismen, gwf Wasser Abwasser 131: 251–255.

    CAS  Google Scholar 

  • Kemmler J, Wanner U, Egli T, Snozzi M and Hamer G (1990) Degradation of nitrilotriacetic acid by two different enzymes in a denitrifying bacterium (strain TE 11). Abstract. Symposium on Environmental Biotechnology, Braunschweig, Germany.

    Google Scholar 

  • Kemmler J, Wanner U, Egli T, Snozzi M and Hamer G (1991) Abbau von Nitrilotriacetat durch zwei verschiedenen Enzyme in einem denitrifizierenden Bakterium, gwf Wasser Abwasser 132: 345–355.

    Google Scholar 

  • Kishore GM and Barry GF (1992) Glyphosate tolerant plants. Patent PCT/US91/04514.

    Google Scholar 

  • LaNauze JM, Rosenberg H and Shaw DC (1970) The enzymic cleavage of the carbon phosphorus bond: purification and properties of phosphonatase. Biochim. Biophys. Acta 212: 332–350.

    Article  CAS  Google Scholar 

  • Lauff JJ, Steele DB, Coogan LA and Breitfeiler JM (1990) Degradation of ferric chelate of EDTA by a pure culture of an Agrobacteriwn sp. Appl. Environ. Microbiol. 56: 3346–3353.

    PubMed  CAS  Google Scholar 

  • Lerbs W, Stock M and Parthier B (1990) Physiological aspects of glyphosate degradation in Alcaligenes sp. strain GL. Arch. Microbiol. 153: 146–150.

    Article  CAS  Google Scholar 

  • Maki AW, Dickson KL and Cairns J Jr. (eds) (1980) Biotransformation and fate of chemicals in the aquatic environment. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Martell AE (1975) The influence of natural and synthetic ligands on the transport and function of metal ions in the environment. Pure and Applied Chemistry 44: 81–113.

    Article  CAS  Google Scholar 

  • McCrary AL and Howard WL (1979) Chelating agents. In: M Grayson and D Eckroth (eds) Kirk-Othmer Encyclopedea of Chemical Technology, Vol 5, 3rd edition (pp 339–368). Wiley, New York.

    Google Scholar 

  • McFeters GA, Egli T, Wilberg E, Alder A, Schneider RP, Snozzi M and Giger W (1990) Activity and adaptation of nitrilotriacetate (NTA)-degrading bacteria: field and laboratory studies. Water Res. 24: 875–881.

    Article  PubMed  CAS  Google Scholar 

  • Mottola HA (1974) Nitrilotriacetic acid as a chelating agent: applications, toxicology and bioenvironmental impact. Toxicol. Environ. Chem. Rev. 2: 99–161.

    Article  CAS  Google Scholar 

  • Nörtemann B (1992) Total degradation of EDTA by mixed cultures and a bacterial isolate. Appl. Environ. Microbiol. 58: 671–676.

    PubMed  Google Scholar 

  • Opgenorth HJ (1987) Umweltverträglichkeit von Polycarboxylaten. Tens. Surfact. Deterg. 24: 366–369.

    CAS  Google Scholar 

  • Schowanek D and Verstraete W (1990a) Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Appl. Environ. Microbiol. 56: 895–903.

    PubMed  CAS  Google Scholar 

  • Schowanek D and Verstraete W (1990b) Phosphonate utilization by bacteria in the presence of alternative phosphorus sources. Biodegradation 1: 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Tiedje JM (1980) Nitrilotriacetate: hindsights and gunsights. In: AW Maki, KL Dickson and J Cairns Jr. (eds) Biotransformation and Fate of Chemicals in the Aquatic Environment (pp 114–119). American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Tiedje JM, Mason BB, Warren CB and Malec EJ (1973) Metabolism of nitrilotriacetate by cells of Pseudomonas species. Appl. Microbiol. 25: 811–818.

    PubMed  CAS  Google Scholar 

  • Uetz T (1992) Biochemistry of nitrilotriacetate degradation in obligately aerobic, Gram-negative bacteria. PhD thesis No. 9722, Swiss Federal Institute of Technology, Zürich, Switzerland.

    Google Scholar 

  • Uetz T and Egli T (1993) Characterization of an inducible, membrane-bound iminodiacetate dehydrogenase from Chelatobacter heintzii ATCC 29600. Biodegradation 3: 423–434.

    Article  CAS  Google Scholar 

  • Uetz T, Schneider R, Snozzi M and Egli T (1992) Purification and characterization of a two component monooxygenase that hydroxylates nitrilotriacetate from “Chelatobacter” strain ATCC 29600. J. Bacteriol. 174: 1179–1188.

    PubMed  CAS  Google Scholar 

  • Wackett LP, Shames SL, Venditti CP and Walsh CT (1987) Bacterial carbon-phosphorus lyase: products, rates and regulation of phosphonic and phoshinic acid metabolism. J. Bacteriol. 169: 1753–1756.

    PubMed  CAS  Google Scholar 

  • Wanner U, Egli T and Snozzi M (1989) A dehydrogenase as the first step in the anaerobic pathway for nitrilotriacetate (NTA) degradation. In: G Hamer, T Egli and M Snozzi (eds) Mixed and Multiple Substrates and Feedstocks (pp 165–167). Hartung-Gorre, Constance, Germany.

    Google Scholar 

  • Wanner U, Kemmler J, Weilenmann H-U, Egli T, El-Banna T and Auling G (1990) Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions. Biodegradation 1: 31–42.

    Article  PubMed  CAS  Google Scholar 

  • Wehrli E and Egli T (1988) Morphology of nitrilotriacetate-utilizing bacteria. Syst. Appl. Microbiol. 10: 306–312.

    Article  Google Scholar 

  • Wilberg E, El-Banna T, Auling G and Egli T (1993) Serological studies on nitrilotriacetic acid (NTA)-utilizing bacteria: distribution of Chelatobacter heintzii and Chelatococcus asaccharovorans in sewage treatment plants and aquatic ecosystems. System. Appl. Microbiol. 16:147–152.

    Article  Google Scholar 

  • Wong PTS, Liu E and McGirr DJ (1973) Mechanism of NTA degradation by a bacterial mutant. Water Res. 7: 1367–1374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Egli, T. (1994). Biochemistry and physiology of the degradation of nitrilotriacetic acid and other metal complexing agents. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics