Skip to main content

Computer Simulations in the Gibbs Ensemble

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 397))

Abstract

The Gibbs ensemble technique is an efficient method to study phase equilibria in a computer simulation. This Chapter gives an overview of this method. The focus is on the principles underlying the method, the practical aspects related to the implementation of the technique, and questions regarding the interpretation of the results.

The practical use of the method is illustrated with applications ranging from polar fluids to chain molecules. In particular, those systems are discussed which require special tricks and extend the range of applicability of the Gibbs method significantly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Frenkel, Free energy computations and first order phase transitions, in Molecular Dynamics Simulations of Statistical Mechanics Systems, edited by G. Ciccotti and W. G. Hoover, Proceedings of the 97th Int. Enrico Fermi School of Physics, 1986.

    Google Scholar 

  2. J. M. Prausnitz, R. N. Lichtenthaler, and E. Gomes De Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, Englewood Cliffs N. J., second edition, 1986.

    Google Scholar 

  3. J. J. Nicolas, K. E. Gubbins, W. B. Streett, and D. J. Tildesley, Molec. Phys. 37, 1429 (1979).

    Article  ADS  Google Scholar 

  4. J K. Johnson, J. A. Zollweg, and K. E. Gubbins, Molec. Phys., in press.

    Google Scholar 

  5. M. R. Reddy and S. F. O’Shea, Can. J. Phys. 64, 677 (1986).

    Article  ADS  Google Scholar 

  6. B. Widom, J. Chem. Phys. 39, 2802 (1963).

    Article  ADS  Google Scholar 

  7. K. S. Shing and K. E. Gubbins, Molec. Phys. 45, 129 (1982).

    Article  ADS  Google Scholar 

  8. A. Z. Panagiotopoulos, Molec. Phys. 61, 813 (1987).

    Article  ADS  Google Scholar 

  9. B. Smit, P. De Smedt, and D. Frenkel, Molec. Phys. 68, 931 (1989).

    Article  ADS  Google Scholar 

  10. D. Frenkel, Monte Carlo simulations, inComputer Modelling of Fluids,Polymers and Solids, edited by C. R. A. Catlow, S. C. Parker, and M. P. Allen, Kluwer Academic Publishers, 1990.

    Google Scholar 

  11. B. Smit and D. Frenkel, Molec. Phys. 68, 951 (1989).

    Article  ADS  Google Scholar 

  12. A. Z. Panagiotopoulos Molec. Simul. 9, 1 (1992).

    Article  Google Scholar 

  13. D. Ruelle, Statistical Mechanics: Rigorous Results,Benjamin, Reading Massachusetts, 1969.

    MATH  Google Scholar 

  14. R. B. Dingle, Asymptotic Expansions, their Derivation and Interpretation, Academic Press, 1973.

    Google Scholar 

  15. A. Z. Panagiotopoulos, N. Quirke, M. Stapleton,and D. J. Tildesley, Molec. Phys. 63, 527 (1988).

    Article  ADS  Google Scholar 

  16. P. Sindzingre, G. Ciccotti, C. Massobrio, and D. Frenkel, Chem. Phys. Lett. 136, 35 (1987).

    Article  ADS  Google Scholar 

  17. K. Shing and S. T. Chung, J. Phys. Chem. 91, 1674 (1987).

    Article  Google Scholar 

  18. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  19. W. Feller, An Introduction to Probability Theory and its Applications,volume 1, Wiley, New York, 1957.

    Google Scholar 

  20. W. Feller, An Introduction to Probability Theory and its Applications, volume 2, Wiley, New York, 1966.

    MATH  Google Scholar 

  21. P. Eppenga and D. Frenkel, Molec. Phys. 52, 1303 (1984).

    Article  ADS  Google Scholar 

  22. I. R. Mcdonald, Molec. Phys. 23, 41 (1972).

    Article  ADS  Google Scholar 

  23. B. Smit, C. P. Williams, E. M. Hendriks, and S. W. De Leeuw, Molec. Phys. 68, 765 (1989).

    Article  ADS  Google Scholar 

  24. K. Binder, Z. Phys. B. Cond. Mat. 43, 119 (1981).

    Article  ADS  Google Scholar 

  25. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Clarendon Press, Oxford, 1982.

    Google Scholar 

  26. K. K. Mon and K. Binder, J. Chem. Phys. 96, 6989 (1992).

    Article  ADS  Google Scholar 

  27. B. Smit, J. Chem. Phys. 96, 8639 (1992).

    Article  ADS  Google Scholar 

  28. B. Smit and C. P. Williams, J. Phys. Cond. Mat. 2, 4281 (1990).

    Article  ADS  Google Scholar 

  29. B. Smit and D. Frenkel, J. Chem. Phys. 94, 5663 (1991).

    Article  ADS  Google Scholar 

  30. M. Rovere, D. W. Hermann, and K. Binder, J. Phys. Cond. Mat. 2, 7009 (1990).

    Article  ADS  Google Scholar 

  31. N. B. Wilding and A. D. Bruce, J. Phys. Cond. Mat. 4, 3087 (1992).

    Article  ADS  Google Scholar 

  32. J. E. Finn and P. A. Monson, Phys. Rev. A 39, 6402 (1989).

    Article  ADS  Google Scholar 

  33. B. Smit, Computer simulation of phase coexistence: from atoms to surfactants, PhD thesis, Rijksuniversiteit Utrecht, The Netherlands, 1990.

    Google Scholar 

  34. J. S. Rowlinson and.F. L. Swinton, Liquids and Liquid Mixtures, Butterworth, London, third edition, 1982.

    Google Scholar 

  35. L. Vega, E. De Miguel, L. F. Bull, G. Jackson, and I. A. Mclure, J. Chem. Phys. 96, 2296 (1992).

    Article  ADS  Google Scholar 

  36. G. L. Deitrick, L. E. Scriven, and H. T. Dams, J. Chem. Phys. 90, 2370 (1989).

    Article  ADS  Google Scholar 

  37. M. Mezei,Molec. Phys. 40, 901 (1980).

    Article  ADS  Google Scholar 

  38. M. R. Stapleton and A. Z. Panagiotopoulos, J. Chem. Phys. 92, 1285 (1990).

    Article  ADS  Google Scholar 

  39. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1987.

    MATH  Google Scholar 

  40. M. E. Van Leeuwen, B. Smit, and E. M. Hendriks, Molec. Phys. (1992), in press.

    Google Scholar 

  41. D. J. Tildesley, private communication, 1989.

    Google Scholar 

  42. A. Z. Panagiotopoulos, Fluid Phase Equilibria 76, 97 (1992).

    Article  Google Scholar 

  43. J. P. Valleau, J. Chem. Phys. 95, 584 (1991).

    Article  ADS  Google Scholar 

  44. J. P. Valleau, J. Comput. Phys. 96, 193 (1991).

    Article  ADS  Google Scholar 

  45. W. W. Wood, J. Chem. Phys. 52, 729 (1970).

    Article  ADS  Google Scholar 

  46. D. Frenkel, (private communications), 1990.

    Google Scholar 

  47. B. Smit and D. Frenkel, Molec. Phys. 74, 35 (1991).

    Article  ADS  Google Scholar 

  48. M. E. Van Leeuwen, C. J. Peter, J. De Swaan Arons, and A. Z. Panagiotopoulos, Fluid phase equilibria 66, 57 (1991).

    Article  Google Scholar 

  49. V. I. Harismiadis, N. K. Koutras, D. P. Tasslos, and A. Z. Panagiotopoulos, Fluid phase equilibria 65, 1 (1991).

    Article  Google Scholar 

  50. D. A. Kofke and E. D. Glandt, Molec. Phys. 64, 1105 (1988).

    Article  ADS  Google Scholar 

  51. A. Z. Panagiotopoulos, Int. J. Thermophys. 10, 447 (1989).

    Article  ADS  Google Scholar 

  52. J. G. Amar, Molec. Phys. 4, 739 (1989).

    Article  ADS  Google Scholar 

  53. R. D. Mountain and A. H. Harvey, J. Chem. Phys. 94, 2238 (1991).

    Article  ADS  Google Scholar 

  54. G. C. A. M. Moon, D. Frenkel, and B. Smit, J. Phys. Cond. Mat. 4, L255 (1992).

    Article  ADS  Google Scholar 

  55. M. Laso, J. J. De Pablo, and U. W. Suter, J. Chem. Phys. 97, 2817 (1992).

    Article  ADS  Google Scholar 

  56. D. Frenkel, G. A. M. Mooij, and B. Smit, J. Phys. Cond. Mat. 4, 3053 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smit, B. (1993). Computer Simulations in the Gibbs Ensemble. In: Allen, M.P., Tildesley, D.J. (eds) Computer Simulation in Chemical Physics. NATO ASI Series, vol 397. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1679-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1679-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4734-0

  • Online ISBN: 978-94-011-1679-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics